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Abstract: The high repeatability of Maximally Stable Extremal Regions (MSERs) on structured images along with their
suitability to be combined with either photometric or shapedescriptors to solve image matching problems have
contributed to establish the MSER detector as one of the mostprominent affine covariant detectors. However,
the so-called affine covariance that characterizes MSERs relies on the assumption that objects possess smooth
boundaries, a premiss that is not always valid. We introducean alternative domain for MSER detection
in which boundary-related features are highlighted and simultaneously delineated under smooth transitions.
Detection results on common benchmarks show improvements that are discussed.

1 INTRODUCTION

Vision tasks such as object recognition, view match-
ing, and tracking, just to name a few, are often per-
formed under the use of local descriptors, which are
usually characterized by an invariant response to cer-
tain classes of image transformations. A common
procedure to obtain the invariant description consists
in a preliminary detection of local image regions in a
covariant way, which will provide local patches to be
described in an invariant manner.

In the particular case of affine transformations, the
vision community has been prolific in introducing co-
variant feature detectors as well as invariant descrip-
tors. Detectors such as the Harris-Affine, Hessian-
Affine (Mikolajczyk and Schmid, 2004) or the Max-
imally Stable Extremal Regions (MSERs) algorithm
(Matas et al., 2002) are noteworthy solutions to detect
affine covariant features. For a complete review and
extensive references on this class of regions, we refer
the reader to the work of Tuytelaars and Mikolajczyk
(2008) and references within.

The almost linear complexity of the algorithm,
the repeatable results and the suitability of MSER
to be described by photometric or shape descriptors
(Moreels and Pietro, 2007; Forssen and Lowe, 2007)
have made the MSER detector one of the popular ref-
erences in the literature. Here, we bring into the anal-
ysis the well-known and not so well-known shortcom-
ings of the above mentioned detection. As a result,
we suggest an alternative domain for the detection of

MSERs which will allows us to retrieve a substan-
tially higher number of features and improve the ro-
bustness to blur. Furthermore, the new domain pro-
vides a more reliable summary of relevant image con-
tent via MSERs detection.

2 BACKGROUND AND
MOTIVATION

Before laying out a detailed description of the motiva-
tion behind our study, we will shortly review the basic
concepts and terminology around MSER detection.

2.1 Maximally Stable Extremal Regions

Concisely, a MSER is defined as an affine covariant
image region which is either brighter or darker than
its immediate surroundings and without any particular
shape. For a more formal definition, let us consider an
imageas a mappingI :D → [0,1], whereD⊂R2. Let
us also denote theinterior and theboundaryof a con-
nected componentQ c in D as∂Q c and int(Q c), respec-
tively. MSERs correspond to a very specific subset of
connected components in the image domain. They are
said to beextremalbecause the corresponding pixels
have either higher or lower intensity than all the pix-
els on its boundary:I |int(Qc)> c or I |int(Qc)< c for a
given c ∈ [0,1], which is the value on the boundary.
Thus,Q c represents amaximal connected component



of a level set. Designating the region asstablerefers
to the fact that a change ofc = c+ ∆, with ∆ > 0,
will imply minor changes in the area of the extremal
region. Q c will be coined asmaximally stableif the
stability measure

ρ(Q c) =
|Q c|

d
dc |Q c|

(1)

attains a local maximum atc (Matas et al., 2002;
Kimmel et al., 2011).

2.2 MSER detection: known
shortcomings

Probably, the most important property of MSER is its
affine covariance that can be directly inferred from
the covariance of the image level sets with respect to
affine transformations in the image domain. On the
other hand, the affine invariance of the detector’s sta-
bility measure guarantees the affine covariance of the
regions. However, as addressed and shown by Kim-
mel et al. (2011), the aforementioned property pre-
vails only if the boundaries of objects are smooth,
which is not always the case. Additionally, the strat-
egy adopted for the detection of these local features
is based on the assumption that images possess well-
defined structures (MSER features are usually an-
chored on region boundaries (Tuytelaars and Miko-
lajczyk, 2008)). These shortcomings have been re-
ported in the well-known comparative study on affine
covariant features performed by Mikolajczyk et al.
(2005). MSERs – along with Hessian-Affine regions
– have shown to be the most repeatable features in
the overall benchmark. However, the former has evi-
denced an expected less consistent behavior: reason-
ably textured scenes or blurred sequences were prone
to provide less repeatable results. As an example,
Figure 1 illustrates such fragility when a progressive
de-focus blur is present: as it increases, the shape of
MSERs tends to change and, simultaneously, its num-
ber decreases.
Furthermore, the number of features that the MSER

detector retrieves is usually low if we compare it to
the number of local features detected by other promi-
nent detectors,e.g., Hessian-Affine or Harris-Affine.
We can regard this fact as a shortcoming of MSER
detection, as it might hinder the robustness of MSERs
to occlusions.

A quite less trivial but noteworthy characteristic
of MSER detection derives from the stability mea-
sure (Eq. (1)), which prefers round shapes to irreg-
ular ones. To our knowledge, Kimmel et al. (2011)
have been the only ones to address the biased pref-
erence for regular shapes. In their paper, the authors

Figure 1: MSER detection (bottom row) on the first three
images of the “Bikes” sequence (top row). MSERs are rep-
resented by fitted ellipses.

have illustrated this bias by showing that if two re-
gions have the same area and the same intensity along
their boundaries, the measureρ tends to prefer the one
with a shorter boundary (perimeter). We emphasize
the importance of such property as most scenes con-
tain irregular shapes and we surely cannot claim that
regular shapes are always more distinctive than irreg-
ular ones.

2.3 Related Work: other MSERs

We have highlighted some of the most important
shortcomings of MSER detection, namely (i) a rela-
tively high sensitivity to blurring, (ii) a small number
of features, and (iii) the preference of the algorithm
towards regular shapes.

A straightforward approach to reduce the sensitiv-
ity of MSER detection to blur is to apply a low-pass
filter to the input image. Such pre-processing will en-
hance the repeatability of MSERs in the presence of
blurred scenes, whereas the number of features will
be reduced. A more reliable alternative is to make
use of a multi-resolution detection: Forssen and Lowe
(2007) suggest an improved version of the MSER de-
tector by building a scale pyramid with one octave
between scales. MSERs are detected at each resolu-
tion and duplicated features at consecutive scales are
removed by comparing their locations. This strategy
leads to a higher number of detected features and an
improved repeatability under blur and scale changes.
However, it requires MSER features to be detected
at each resolution, which increases the computational
complexity of the method.

With the aim of freeing the MSER detector from
the existent preference towards round shapes, Kim-
mel et al. (2011) propose several reinterpretations of
the stability measure in order to define more informa-
tive shape descriptors.



3 FEATURE-DRIVEN MSERS

We extend the concept of MSER to an alterna-
tive image representation in which certain boundary-
related features are highlighted. MSERs detected on
this domain will be coined asfeature-driven MSERS.
The proposed domain is less sensitive to blurring and
allows the MSER detector to respond to a substan-
tially higher number of features per image. Moreover,
irregular shapes will appear more regular in the new
domain. In short, we propose a domain that encapsu-
lates the desired properties to yield a reliable MSER
detection, namely the existence of regular shapes and
well-defined boundaries combined with smooth tran-
sitions. The new domain is also designed to improve
the completenessof MSER features. We can regard
a set of features as a complete one if it preserves as
much as possible the information contained in the im-
age (Dickscheid et al., 2010). Increasing the number
of detected MSERs is not enough to produce a more
complete feature set; the regions should also preserve
the most relevant image content.

In the process of obtaining a domain characterized
by well-defined boundaries, but with smooth transi-
tions, we start by highlighting boundary-related fea-
tures. The process described herein highlights edges
using gradient information, which is a valid source
of information to build the domain with the desired
properties. Other alternatives can be considered for
feature highlighting,e.g., the eigenvalues of the Hes-
sian matrix.

For our purpose, obtaining smooth transitions at
the boundaries is as important as the process of fea-
ture highlighting and the consequent identification of
structural regions. The detection of structures at dif-
ferent scales will help us to define smooth transitions.
The process of averaging information over scales is
the key component to obtain the desired smoothness.
In the domain given as an example, we will highlight
edges and obtain smooth transitions by making use of
the gradient magnitude, computed by means of Gaus-
sian derivatives at several scales. LetL(:,σ) be the
result of convolvingI with a Gaussian kernelg with
varianceσ2. From the first order derivatives ofL at
different scales, we obtain a new input for MSER de-
tection:

L̂(~x) =
N

∑
i=1

σi

√

L2
x(~x,σi)+L2

y(~x,σi), (2)

where the standard deviationσi varies in a geomet-
ric sequenceσi = σ0ξi−1, with σ0 ∈ R

+, ξ > 1, and
N denotes the number of scales. The final image is
the result of averaging gradient magnitude computed
at different scales. By doing this, with a reasonable

number of scales, smooth transitions at the edges will
be obtained. Fig. 2 illustrates the suggested detection
on a scene with de-focus blur. It is readily seen that
the new set of MSERs provides a good coverage of
the content and robustness to blur.

Bikes 1 Bikes 3

Input Images

Bikes 1: L̂(~x) Bikes 3: L̂(~x)

Feature highlighting

Feature-driven MSERS

Figure 2: Example of a detection of feature-driven MSERs
using the suggested domain. Detected features are repre-
sented by fitted ellipses.

The detection depicted in Fig. 3 serves as a more
illustrative example of the difference between origi-
nal MSERs and the proposed ones. For a better com-
prehension of the proposed detection and due to the
relatively low number of features detected on the syn-
thetic image, we distinguish in this example MSER+
featuresi.e., dark regions with brighter boundaries,
from MSER- features, which correspond to bright re-
gions with darker boundaries. The latter features are
obtained by giving the inverted image as input. As
can be seen, the use of the proposed domain yields a
higher number of MSERs. Furthermore, it allows us
to capture informative patterns in the scene such as
corners and junctions, which are usually neglected by
a traditional MSER detection.

The new domain will also attenuate the so-
called irregularity of extremal regions. Figure 4
helps to clearly illustrate the process of attenuation:
the boundaries of extremal regions correspond to
isophotes, i.e., iso-intensity countours. As expected,
these curves tend to appear irregular in shape on the
luminance channel (see Fig. 4-2(a)-(b)), whereas the
new domain provides more regular shapes (see Fig. 4-
3 (a)-(b)). The examples in this figure equally demon-
strate that the proposed domain tends to highlight
relevant structures and present them as potential ex-
tremal regions. We can illustrate this fact with the
example of the logo on the motorbike: it appears as
a scattered object on the luminance channel, whereas
the new domain regards it as a relevant structure.



(a)

(b)

(c)

Figure 3: MSER detection on a synthetic image (green:
MSER+, red: MSER-): (a) input image; (b) original de-
tection; (c) suggested detection.

4 EXPERIMENTAL VALIDATION

We have followed the guidelines given by the bench-
mark suggested by Mikolajczyk et al. (2005) to as-
sess the repeatability of the redefined MSER on pla-
nar scenes. In the literature, repeatability as been re-
garded as the fundamental criterion to assess the per-
formance of local features. Regardless of its impor-
tance, it does not provide a hint on the usefulness
and quality of the features. Therefore, our evalua-
tion has taken into account another important criterion
that is often neglected: the completeness of features.

1 (a) 1 (b)

2 (a) 2 (b)

 

 

3 (a) 3 (b)

Figure 4: Isophotes and extremal regions: (1) input images;
(2) regions delineated by isophotes on the luminance chan-
nel; (3) regions delineated by isophotes on the suggested
domain.

Furthermore, we would like to determine the level of
complementarity between MSERs extracted from the
original image and the proposed domain. Special em-
phasis is given to the performance of MSERs on struc-
tured images.

In this section, features that are retrieved using the
gradient-based imagêL as the input image for detec-
tion will be referred to as f-MSERs.

Implementation details We have made use of the
code provided by Vedaldi and Fulkerson (2008) for
MSER detection, which has been extended to deal
with images intensity values varying in a range dif-
ferent from{0, . . . ,255}, as the new domain intensity
values might be greater than 255.

Parameter settings In the whole set of experi-
ments, the new domain was built with an initial scale
σ2

0 = 0.64 andξ = 1.19. N, the number of scales, was
set to 16. The default value for the variation param-
eter∆ required by the stability measure is 10, as it is
a reasonably low number to give rise to a high num-
ber of features. The protocol that we have followed
evaluates the repeatability rate and the number of cor-
respondences. A less sparse detection often implies a



drop in the repeatability rate, albeit the potential in-
crease in the number of correspondences. For a reli-
able evaluation of these two criteria, detectors should
respond to a comparable number of features. Thus, in
some cases, we report results using additional values
for the variation parameter in the stability measure.
On one hand, the use of several∆ allows us to have a
more insightful analysis and comparison of the main
results. On the other hand, it is also advantageous
to analyze results for a single (fixed)∆: we can ex-
pect a higher number of f-MSER features but would
they be more repeatable than MSERs? Moreover, it
is interesting to assess the degree of complementarity
between MSER and f-MSER features when there is a
discrepancy between the cardinalities of sets.

4.1 Repeatability Evaluation

The benchmark suggested by Mikolajczyk et al.
(2005) computes the repeatability between regions
detected on two image pairs using 2D homographies
as a ground truth. Two regions are deemed as cor-
responding and, therefore, repeated, with an overlap

error of ε0 ×100% if 1−
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µ1 and µ2 denote the approximating ellipses of the
two detected regions,H is the homography andR ∗
represents the set of points identified by its subscript
∗. The dataset, known as the Oxford dataset, com-
prises 8 sequences of images, each one with 6 im-
ages, whose short description is outlined in Table 1
and depicted in Fig. 5. One of the main motiva-
tions to define f-MSERs is to find a more repeatable
set of features in structured scenes, even when blur
occurs. Figures 7 to 10 depict the repeatability and
the correspondence plots for the sequences “Bikes”,
“UBC”, “Leuven” and “Boat” (see detection results
in Fig. 6), with an overlap error of 40%. The first im-
age in each sequence is used as the reference. In all
the cases, it is clear thatf -MSER features are higher
in number without showing a significant drop in the
repeatability rate. We would like to stress that a sub-
stantially higher number of correspondences accom-
panied with a slight decrease of the repeatability rate
is preferable to a minor increase of the repeatability
with less features, as in the former the absolute num-
ber of repeated features is considerably higher, which
might provide a better coverage of the content with a
similar repeatability rate. Nonetheless, the sequences
of structured images affected and corrupted by blur
or JPEG compression have shown an improved re-
peatability rate with the use of f-MSERs. In the “Leu-
ven” sequence, we have a similar repeatability rate for
both types of MSERs, although f-MSERs appear in a

higher number. The changes in the lighting conditions
produce a similar effect on the detection of MSERs
on both domains. For the “Boat” sequence, we re-
port a decrease of the repeatability rate of f-MSERs
at higher scales. Nevertheless, the number of repeated
f-MSERs at higher scale changes is comparable to the
number of repeated MSERs.

For space reasons, we will not display all the re-
sults of the experiments in the form of plots. How-
ever, Table 2 gives a hint on the behavior of the de-
tected regions for the complete dataset. It provides
the repeatability rate and number of correspondences
for the third image of each sequence as well as the cor-
responding average values for each sequence with an
overlap error of 40%. By analyzing the table, one can
conclude that feature-driven MSERs yield a consid-
erably higher number of correspondences. The lower
average repeatability rate of f-MSERs as seen in some
sequences is mainly due to the decrease of the re-
peatability rate in the last images of the sequence. As
theory confirms, in well-structured scenes, the new
MSERs can yield an increased repeatability. With re-
gard to sequences with viewpoint changes, f-MSERs
have shown a satisfactory repeatability. Nonetheless,
this repeatability can be improved if we build the do-
main under an affine scale-space.

Figure 6: f-MSERs (top row) and MSERs (bottom row) de-
tected on the first and third images of the “Boat” sequence.

4.1.1 Additional experiments

We have performed additional experiments on im-
ages from the Caltech Image Categories dataset. The
test images have been blurred (Figs. 11 and 12) and
MSERs and f-MSERs have been detected on them.
The repeatability results are summarized in Figs. 13
and 14. Once again, f-MSERs are retrieved in a higher
number. When the effect of blurring is more severe,



Table 1: Oxford dataset sequences.

Sequence Graffiti Wall Boat Bark Bikes Trees Leuven UBC
Texture X X X

Transformation Viewpoint Viewpoint Scale Scale Blur Blur Light JPEG

Graffiti Wall Boat Bark

Bikes Trees Leuven UBC

Figure 5: Oxford dataset sequences. Top row: reference images; bottom rows: third images.
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Figure 7: Repeatability rate and number of correspondencesfor the “Bikes” sequence (overlap error of 40%).
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Figure 8: Repeatability rate and number of correspondencesfor the “UBC” sequence (overlap error of 40%).
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Figure 9: Repeatability rate and number of correspondencesfor the “Leuven” sequence (overlap error of 40%).
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Figure 10: Repeatability rate and number of correspondences for the “Boat” sequence (overlap error of 40%).



(a) (b) (c) (d)

Figure 11: “Faces” sequence (Gaussian blur): (a) original;(b) σ = 5; (c)σ = 10; (d)σ = 15.

Table 2: Repeatability rate and number of correspondences
for each sequence (overlap error of 40%).

3rd image Sequence

(average)

MSER f-MSER MSER f-MSER

Grafitti 56%(310) 48%(538) 48%(244) 39%(402)

Wall 53%(2093) 57%(2484) 46% (1595) 46% (1786)

Boat 48%(658) 56%(861) 41%(388) 39%(556)

Bark 52%(276) 48%(355) 60% (268) 39%(295)

Bikes 47%(505) 58%(1328) 42%(360) 46%(1002)

Trees 38% (1767) 36% (1796) 33%(1295) 30%(1401)

Leuven 57%(668) 58%(901) 57% (488) 54%(768)

UBC 50%(1114) 63%(1647) 42% (825) 51%(1262)

MSERs tend to be more repeatable but with a notice-
ably low number of correspondences.

4.2 Completeness Evaluation

How much of the image information is preserved
by local features? Feature sets should capture the
most relevant image content in order to provide
a trustworthy summarized description of the im-
age. This requirement is known in the literature
as completeness. A measure of completeness has
been proposed by Dickscheid et al. (2010). Suc-
cinctly, theincompletenessof a detection corresponds
to the following Hellinger distance: d(pH , pc) =
√

1
2 ∑~x∈D (

√

pH(~x)−
√

pc(~x))2, where pH corre-
sponds to anentropy density, computed from local
image statistics andpc denotes afeature coding den-
sity, inferred from the set of features. We emphasize
that the completeness measure is not a simple way
of evaluating the image coverage of feature sets; it
penalizes local feature sets that contain less informa-
tive patterns despite of their coverage. For the pur-
pose of the evaluation, we defined a dataset compris-
ing images from the Oxford dataset sequences. Each
sequence was represented by its third image. The pa-
rameter settings for the detection coincide with the
ones used in the previous subsection. Table 3 out-
lines the results of the completeness evaluation given
by the Hellinger distance between the two aforemen-
tioned distances, using feature coding densities com-
puted from MSER and f-MSER feature sets as well as

a combination of both sets. The analysis of the latter
feature set results allows us to infer on the comple-
mentarity of MSER and f-MSER features. Addition-
ally, we have analyzed the completeness of f-MSER+
and f-MSER- features. These results are summarized
in the same table.

It is important to note that MSER-like features are
not among the most complete ones (Dickscheid et al.,
2010). It is readily seen that homogeneous regions
are easily entitled to be classified as extremal regions,
which, in most of the cases, means excluding the most
informative content. Furthermore, the number of fea-
tures detected by the MSER algorithm tends to be
lower than the ones given by other prominent detec-
tors, such as the Hessian-Affine or the Harris-Affine.

One important conclusion to be drawn from Ta-
ble 3 is that f-MSER detection will provide us a more
complete set of features than the one comprised of
standard MSERs. The incompleteness values for f-
MSERs range from 0.1542 (“Wall” image) to 0.3573
(“Leuven” image), which reflects the high level of
completeness of these features. MSER features are
less complete and, in some cases, even less complete
than f-MSER+ or f-MSER- feature sets. The combi-
nation of MSER and f-MSERs features gives us the
most complete feature sets for each sequence. How-
ever, the complementary between both feature sets
is practically non-existent; the incompleteness values
for MSER∪ f-MSER features are comparable to the
ones for feature-driven MSERs sets. This result helps
us to conclude that the relevant content preserved by
standard MSERs is also preserved by f-MSERs.

5 CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

We have addressed the shortcomings of MSER de-
tection as well as the desired properties of an image in
order to provide a reliable MSER detection. As result,
we have introduced an alternative domain for MSER
detection. This domain is mainly characterized by the
highlighting of certain boundary-related features and
the simultaneous presence of smooth transitions at the
boundaries. The detection of MSERs on this domain
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Figure 12: “Cars” sequence (Gaussian blur): (a) original; (b) σ = 5; (c)σ = 10; (d)σ = 15.
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Figure 13: Repeatability rate and number of correspondences for the “Faces” sequence (overlap error of 40%).
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Figure 14: Repeatability rate and number of correspondences for the “Cars” sequence (overlap error of 40%).

Table 3: Dissimilarity measured(pH , pc) and number of regions for the third image of each sequence.

MSER f-MSER f-MSER+ f-MSER- MSER∪ f-MSER

Graffiti 0.3828 (1085) 0.2653 (2216) 0.3317 (1130) 0.3565(1086) 0.2630

Wall 0.2060 (4433) 0.1542(4981) 0.2402 (2711) 0.2568(2270) 0.1361

Boat 0.3532 (2319) 0.2782 (2720) 0.3634 (1393) 0.3474 (1327) 0.2694

Bark 0.2862 (1940) 0.1921 (2802) 0.2729 (1553) 0.31 (1249) 0.1817

Bikes 0.4827(1123) 0.3170 (2388) 0.4042 (1311) 0.4318 (1077) 0.3204

Trees 0.2359 (4821) 0.1874 (5299) 0.2871 (2529) 0.2573 (2770) 0.1755

Leuven 0.4539 (1017) 0.3573(1597) 0.4386 (869) 0.4557 (728) 0.3451

UBC 0.2929 (2431) 0.2636 (2619) 0.3479 (1400) 0.3523(1219) 0.2378



responds to a higher number of regions than the one
that uses the luminance channel as input. The feature-
driven MSERs tend to be more robust to blur than tra-
ditional ones. Furthermore, the new set of features
is more complete as it preserves more of the relevant
image content. The high level of completeness shown
by the feature-driven MSERs suggests that they can
be used to solve object recognition problems.

The new domain can be built with any func-
tion that responds to boundary-related features, which
gives several options to work with. In this paper, we
have used the gradient magnitude to build it and, as
future research directions, we intend to exploit other
measures to derive the domain. Future work also
includes assessing the performance of feature-driven
MSERs on object recognition problems.
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