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Abstract—We introduce Stable Salient Shapes (SSS), a novelestimates elliptical affine covariant regions around therast
type of affine-covariant regions. The new local features are points, whose shape is defined by the structure tensor matrix
obtained through a feature-driven detection of Maximally Sable |, the same manner, the Hessian-Affine detector adopts the

Extremal Regions (MSERSs). The feature-driven approach pre . - . . .
vides alternative domains for MSER detection. Such domains affine shape adaptation scheme; however, the initial etsna

can be viewed as saliency maps in which features related toare given by the determinant of the Hessian matrix.
semantically meaningful structures, e.g., boundaries andsym- The major shortcoming of the Hessian-Affine and the

metry axes, are highlighted and simultaneously delineatednder  Harris-Affine detectors is their computational complexig
smooth transitions. Compared with MSERS, SSS appear in higér they areO((s—+i)p) algorithms, where denotes the number of
number and are more robust to blur. In addition, SSS are . . . . .
designed to carry most of the image information. Experimerl scales used "_1 t_he amomat'c scale selectl(_)n, W_h'Ch deneEml
results on a standard benchmark are comparable to the resuit the characteristic scalé,is the number of iterations used in

of state-of-the-art solutions in terms of repeatability sore. The the shape adaptation mechanism, arigithe number of points
computational complexity of the method is also worth of note from the initial estimate.

as it.is lower than those of most of the competing algorithmsni Affine covariant regions can also be derived frestremal

the literature. regions In the image domain, an extremal region corresponds
to a connected component whose corresponding pixels have
either higher or lower intensity than all the pixels on itaibd-

Local image feature detectiois a prolific and prominent ary. Extremal regions hold two important properties: thieo§e
research topic for the computer vision community. It hagxtremal regions is closed under continuous transformatio
proved to be an effective tool in the resolution of a number off image coordinates as well as monotonic transformations
vision problems, including stereo vision, image matching a of image intensities. The Maximally Stable Extremal Region
object recognition. The main purpose of local feature diec detector [6] responds to extremal regions that are staltle wi
is to provide a reliable image representation by identidyn respect to intensity perturbations. In its original impkarta-
sparse set of visually relevant image regions. tion, the MSER detector enumerates extremal regions using

Local feature detection is closely relatedféature descrip- a union-find algorithm, whose complexity ©(nloglogn),
tion, which aims at summarising the local images patchegeren denotes the number of pixels. The high repeatability
covered by the detected regions. Some applications requirgates shown by the MSER detector in structured images and
local feature detection that is covariant with a class ofgea the suitability of MSERS to be described either by photoietr
transformations, e.g., affine ones. A covariant regiondaite or by shape descriptors [7], [8] have made the MSER detector
will potentiate an effective invariant description withspect a prominent reference in the literature.
to the same class of image transformations. In this paper, we extend the work presented in [9] to propose

In the particular case of affine covariant detectors, mamynew type of affine covariant features, Stable Salient Shape
approaches have been suggested in the literature. We ({@BS), which are the result of performing a feature-driven
shortly review the most prominent solutions; we refer theetection of Maximally Stable Extremal Regions.
reader to the work of Tuytelaars et al. [1] and referencesiwit ~ The first step of the algorithm provides saliency maps that
for a more detailed and comprehensive review. will be posteriorly used as domains for MSER detection. In

The Hessian-Affine (HESAFF) and the Harris-Affinesuch maps, features that are linked to semantically meaning
(HARAFF) detectors [2], [3] are two popular affine covarianstructures — such as boundaries and symmetry axes —, are
solutions based on image derivatives. The former is a coanbirnighlighted. Unlike the original edge-driven MSER detenti
tion of a multi-scale Harris-Stephens interest point detefgl] this extended version contains a combined feature highligh
with an affine shape adaptatioscheme [5]. From initial esti- ing, which allows the detector to retrieve a higher number of
mates of interest points detected at their characteristites, regions without redundancy. Our algorithm overcomes major
the algorithm converges to affine covariant locations via dimitations of a standard MSER detection, namely the sensit
iterative process — the so-called affine shape adaptatibat-, ity to image blur, the presence of a reduced number of regions

|. INTRODUCTION



and the biased preference for regular shapes. All of thispsoduced less repeatable MSERs. If we take into account that
achieved without significantly increasing the computaaionMSERSs tend to anchor on region boundaries — which suggests
complexity of the algorithm. that the method is more suitable to deal with well-struadure
scenes [1] —, one can expect less repeatable results onegxtu
scenes. The sensitiveness to image blur is explained by the

The main motivation for our work comes from the well-undermining effect that it has on the stability criterion.
known advantages in obtaining affine covariant regions from Another important downside of MSER detection is related
extremal regions as well as the shortcomings that suclegratto the number of regions that the detector retrieves. MSERS
entails. For a better understanding of our motivation, wi wikend to be in lower number than other regions retrieved by
start by providing the basic terminology and the formal defitetectors such as the Hessian-Affine or the Harris-Affine. A
nitions around the concepts of extremal regions and MSER&duced number of features may not provide the best coverage
of the content, which impairs the robustness of the method to
. . object occlusions.

Let us denote bymage / the mapping/ : D C 7% — Kimmel et al. [12] have observed that the affine covariance
{0,1,..., M}. A connected componeror regior) Q in D 4t MSERSs is verified if and only if objects possess smooth
is a subset ofD for which each pair of pixelsp,q) € Q®  poundaries. As the affine covariance of MSERS is an immedi-
is connected by apath in Q, i.e., there is a sequenceye consequence of the covariance of the image level sdts wit
P,a1,8,...,8n,q € Qsuchthap ~aj, a1 ~ &;,....8n ~ affine transformations of the coordinates, it is require the
q, where~ denotes the equivalence relation defined(by~  hoint-spread function of camera lenses is small compared to
q) <= max{|p1 — q,[p2 — g2} < 1 (8-neighbourhooll  the natural blurring of objects. The authors have also nitad

We define theboundaryof a regionQ as the se¥Q = e stability criterion as defined in (1) prefers regulauid)
{peD\Q:3q € Q: p~qj}. Aconnected compone in  ghapes to irregular ones. This bias for regular shapes fes be
D is anextremal regionif Vp € Q,q € 9Q: I(p) < I(d) OF  gemonstrated by showing that if two regions have the same
I(p) > I(q). area and the same intensity along the boundaries, the ohe wit

Let 1, Q,...,Qi1,Q;,... be a sequence of extremaly shorter boundary will yield a lower value pf
regions such tha@, C Qx11,k = 1,2,.... We say thatQ;

Lsrif:enrwiiﬁlmally stable extremal regiahand only if thestability C. Refinements on the MSER detector

II. BACKGROUND AND MOTIVATION

A. Preliminaries and Definitions

plk,A) = M, (1) The MSER detector has been extended to deal with colour
| Qx| images [10] and video sequences [13]. It has also been subjec
attains a local minimum at, where A is a positive integer to several refinements. In [8], Forssen introduced an alten
denoting thestability threshold As area ratios are preservedISER detector that makes use of a multi-scale pyramid
under affine transformationg,is an affine invariant measure.representation with one octave between scales. This multi-
Consequently, MSERs are covariant with these geometfRsolution approach detects MSERs at each resolution and
transformations. duplicated regions at consecutive scales are removed by dis
We note that the detection of MSERs is related to imag@rding fine scale MSERs with similar locations and sizes as
thresholding, since every extremal region is a connectet coregions detected at the next coarser scale. The multivtsol
ponent of a thresholded image [1]. In fact, we can altereftiv MSER detector produces a higher number of regions and is
describe the detection of MSERS as a process that consitlergnore robust to image blur and scale changes. On the downside,
the possible thresholdings of an intensity image. An exalenit requires a detection at each scale, which increases the
region is considered maximally stable if it shows a smafiomputational complexity of the algorithm. The algorithon f
area change across several thresholdings [10]. By incrgadine detection of Stable Affine Frames (SAFs) [14] can be
the threshold, we detect MSERswhich correspond to dark regarded as a refinement on the MSER detector. SAFs lie on
regions with brighter boundaries. MSERswhich are brighter the boundary of extremal regions. Unlike MSERSs, the stgbili
regions with dark boundaries, can be obtained through tBE SAFs with respect to intensity perturbations is measured
same process by inverting the input intensity image. locally, i.e, we do not require the whole boundary to be
stable to intensity changes. This algorithm produces adnigh
B. Extremal Regions and Maximally Stable Extremal Regiongimber of features and covers more evenly the image content.
downsides Moreover, SAFs are more repeatable in the presence of image
Some of the major limitations of MSER detection havélur. On the downside, the method requires a considerably
been summarised in the comparative study on affine covari@igher computational effort.
regions performed by Mikolajczyk et al. [11]. In this study, Kimmel et al. [12] free the MSER detector from the prefer-
MSERs and regions detected with the Hessian-Affine detectarce towards regular shapes by presenting several reefmit
have shown higher repeatability scores. However, the fornaf the stability criterion, which prefer irregular shapeslare
has shown an inconsistent performance: sequences of imagféksaffine invariant. The main goal of these reinterprietas
with different levels of blur as well as textured sequenaageh is to define more informative shape descriptors.



I1l. STABLE SALIENT SHAPES in a scene. Our algorithm relies on the structural infororati

At a first glance, the ideal image for the MSER detector grovided by edges. Ridges are relgted to symmetry axesys the
the one that is well structured, with uniform regions sefeta often correspond to the major axis of symmetry of elongated

: . . .. objects.
by strong intensity changes [1]. However, the affine coverga 0 ) _ N .
holds for MSERs if and only if the boundaries of the objects The first measure intends to highlight edges and, simultane-

in the scene are smooth [12]. These are the principles inwhg!S!Y: delineate smooth transitions at the boundariesyease
the SSS detector is based on. As we have stated in the intro= second one highlights ridges while preserving the afore
ductory section, we can succinctly describe the consbuaif mentioned smoothness. The detection of structures ateliffe

Stable Salient Shapes as a feature-driven detection of MSE??aIes W'I_I hglp us to define smooth transitions. The process

where such features correspond to structures related éatsbj ©f 8Veraging information over scales is the key component to

boundaries or even symmetry axes obtain the desired smoothness. For the averaging procedure
The first step of the proposed algorithm, coinedieature normalised Gaussian derivatives [18] are utilised.

highlighting, consists in building a saliency map for each one 1) Edge h_ighlighting: We highlight edges_ and Obtf"“”
of the features to be highlighted. These maps are inten ooth transitions by making use of the gradient magnitude,

to be suitable domains for MSER detection. There are tv&gmputed by means of Gaussian derivatives at several scales
L(:,0) be a smoothed version of image by means

main reasons for emphasising features related to strisctur§! X .

such as boundaries or symmetry axes. First, the sema a Gaussian kerneli at the scaleo®, ie., L(x,0) = .
meaningfulness of these structures is high as they carr (o) *I_)(X)‘ The _edge strength can be found by measuring
relevant amount of image information, including fine destailthe gradient magnitude,
[15], [16], [17]. Second, we note that the boundaries of IVL(x,0)| = \/Lg(x,a)+L§(x,a), )
MSERs often correspond to objects boundaries. Since the

stability of an extremal region with respect to intensitaobges where L, and L, denote the first-order partial derivatives of
is measured at its boundary, we will be reshaping objedtsin the 2 andy directions, respectively. From (2), we obtain

boundaries to yield more stable extremal regions. our measure for edge highlighting:

The subsequent step of the algorithm consists in detecting N
MSERs on each of the saliency maps. We cannot expect a full Fi(x) = Z 0i [VL(X, 04)] , (3)
complementarity among the extremal regions detected along i—1

the different maps, since they are related to the same BtRCt \yhere the standard deviation varies in a geometric sequence
The third and final step of the algorithm takes into accouet th _ oof~1 withop € RT, € > 1, andN denotes the number
potential overlapping or even the duplication of MSERS ang scales. The final image is, therefore, the result of aveeag

performs a region pruning. Figure 1 depicts the main steps g, gient magnitude computed at different scales. By doing

SSS detection. this, with a reasonable number of scales, smooth transitibn
the edges will be obtained.
2) Ridge highlighting:The measure for ridge highlighting

e derives from the Hessian matrix,
alient Shapes
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whereL,,, L, andL,, are the second order partial deriva-
tives of L, a Gaussian smoothed version of imdgé& heprin-
cipal curvature[19], which highlights curvilinear structures is
either given by

Praz (X, 0) = max(0, A2 (H(X, 0))), (5)

Fig. 1. Algorithm for the detection of Stable Salient Shaffeature-driven
MSERSs). The first step of the algorithm produces saliency smtapt will Prin(X,0) = min(0, A1 (H(X, 0))), (6)

be used in the next step as input images for MSER detectiom. riaps

emphasise features that are related to semantically ngfahsiructures, such where \; and A denote the minimum and maximum eigen-

as boundaries and symmetry axes. values, respectively. We note that Egs. (5) and (6) respond t

complementary structures: the former responds to darls line

on a brighter background, whereas the latter detects leright

lines on a dark background. From the principal curvature, we
We perform the highlighting of edges and ridges by meantain the measure for ridge highlighting:

of two differential-based measures, which yield two differ N

saliency maps. Edges are undoubtedly important featuras in Fy(x) = Z 02 Praz (X, 01), )

image, since they reflect the presence and the shape of ®bject P

A. Feature highlighting



whereo; = 0o&~ 1, with oy € RY, ¢ > 1, and N denotes the
number of scales. M

Our ridge highlighting measure relies on the use of the
principal curvature measure to detect darker lines on ahbrig
background. However, the measures defined in (5) and (6)
can be used interchangeably, as we perform the enumeration
of extremal regions in the resulting saliency map as well as
in the inverted saliency map.

In Fig. 2, we depict the saliency maps that are the result
of the proposed edge and ridge highlighting, using a license :
plate as the input image. It is readily seen that both salienc Original image Blurred image Blurred image
maps preserve the structural information of the image and ad (0 =3) (0 =10)
some smoothness to the scene. While the edge highlightifigg 4. MSER and SSS detection on images with Gaussian biigiral
mainly captures and accentuates the objects boundaries, /f}fge.c = 3 ando = 10). Top row: MSER detection. Bottom row: SSS
. Lo . . detection. The detected regions are replaced by fittedseHip
ridge highlighting provides a clearer structural sketchthe
scene [19]. For the purpose of MSER detection, we can regard
the map that emphasises edges as a more suitable domain,
as it generates uniform regions separated by heavy inyensit
changes and is less sensitive to noise. However, the second
map provides us complementary regions, whose detection is
important to improve the coverage of the content.

SER

SSS

B. MSER detection and region pruning

Apart from the input image, there are no differences be-
tween the feature-driven MSER detection and the original
one, i.e., we assess the stability of extremal regions uiag
original stability criterion. Figures 3 and 4 help to illeste
the advantages of our feature-driven MSER detection ower th
standard one. In Fig. 3, we depict two well-structured ssene
and the corresponding isophotes on the luminance channel
and on both of the saliency maps. Both maps show a higher
number of extremal regions, which can be increased with a
higher number of scales. Due to the Gaussian smoothing,
the irregularity of extremal regions is attenuated, whial w
compensate the preference of the stability criterion fgutar
shapes.

Figure 4 compares standard MSER detection with SSS
detection in the presence of Gaussian blur. As blur incgase
both types of regions decrease in number. However, this
reduction is more significant for MSERs. Fer = 3, the SSS (final)
number of MSERS decreases 19%, whereas the number of
SSS decreases 11%. Fer = 10, the number of MSERS Fig. 5. An example of the proposed region pruning. The detecegions
decreases 93%, while the number of feature-driven MSER replaced by fitted ellipses.
decreases 53%. The example also shows that SSS are in higher
number and cover the most informative parts of the scene,
regardless of the amount of blur.

The two saliency maps do not provide fully complementary To conclude this section, we present the results of differen
regions. Thus, we eliminate regions that are duplicatedintb detectors on a Siemens star (see Fig. 6). The detectiordeslu

duplicates, we compare the centroid distance. If this dista the scale covariant SFOP regions [20] and affine covariant
is lower than 0.1, we compute the overlap error between tfeatures, such as MSERs, Principal Curvature-based Region

corresponding fitted ellipses. If this error is less than 188 (PCBRs) [19], SSS, Harris-Affine, and Hessian-Affine region
discard the region with higher. Figure 5 depicts the proposedin this example, SSS cover the most informative content

region pruning. A previous pruning, which removes regiongithout the presence of redundant regions. Moreover, most
based on the area or the stability measurées performed on of the content covered by other regions, is also covered by

each map. We will describe it in the upcoming section. SSS features .



Saliency maps
Input image Edges Ridges
Fy Fy

. i

| BRAISH COLYMAIA | | BRITISH COLUMBIA

Fig. 2. An example of the proposed feature highlighting. Keaistructures in the saliency maps are the most salient doesbtain the final saliency maps
— Fy and F», —,12 scales were used. The parametessand & were set tal and v/2, respectively.

Input Image Extremal regions Extremal regions Extremaloresg)
and isophotes and isophotes and isophoteg
(luminance channel) (edges map) (ridges map)

Fig. 3. Regions delineated by isophotes on the differentaiosn

V. EXPERIMENTAL VALIDATION in a range different fror0, . . ., 255}, since the saliency maps

_ intensity values might be greater than 255.
To experimentally assess the performance of the proposed a) Parameter settingsWe have built the saliency maps
detector, we have followed the guidelines of the standaatt ev,;ip, o0 =1, &£ = ¥/2, and N = 12. The stability threshold

uation protocol proposed by Mikolajczyk et al. in [11], whic A \as set to 20. For the MSER detector, this parameter was
comprises image sequences with gradually increased €f€ctgqt 1o 10. The minimum and maximum region area were set

geometric and photometric transformations, such as vi_éWpoto 30 and 1% of the image area, respectively, for both of
changes, scale changes, blur, and JPEG compression. Bfghgetectors. In addition, we have only considered MSERs
sequence contains six images and a ground-truth homograghy sss whosp was lower than 0.7. As for the remaining

is provided between the first image of the sequence and eglectors, we have used the default parameter settings.
one of the five remaining images.

For the sake of clarity, the experimental validation ha®- Repeatability evaluation
considered state-of-the-art affine covariant detectastiave  Repeatability is often regarded as the fundamental ooiteri
been made publicly available. The list includes: the MSE® assess the performance of local features. Mikolajczyek e
detector, the Hessian-Affine and the Harris-Affine detesctordefined the repeatability score as the ratio between the eumb
as well as the PCBR detector. We note that the latter hafsregion correspondences and the smaller number of common
not been suggested as a generic detector; Deng et al. suggEgbns in a pair of images of the same sequence. As the shapes
it for object recognition. However, due to the fact that ibf affine covariant regions are diverse, each region is cepla
detects affine covariant regions from structural informmati by an approximating ellipse. The use of ellipses allows us to
using a multi-scale approach, we have decided to includefine a repeatability score for a given overlap error.
it in the evaluation. Apart from the MSER detector, all the We have performed our evaluation on five sequences (de-
implementations that we have used are the ones provided gicted in Fig. 7). The first one is the Graffiti sequence, which
maintained by the authors. For the SSS and MSERs detectamtains a well-structured pattern under viewpoint change
we have made use of the code provided by Vedaldi afithe Wall sequence shows a textured sequence (brick wall)
Fulkerson [21]. In the case of the SSS detector, this code hagler viewpoint changes. The Boat sequence depicts a rel-
been modified to deal with images whose intensity values vaatively textured scene composed of natural and man-made



Fig. 7.  First images (reference images) of the sequenced imsehe
experiments. First row, from left to right: Graffiti, Wall,dt. Second row,
from left to right: Bikes, UBC.

Fig. 6. Local feature detection on the beams of a Siemens[2@&r Top
left to bottom right: SFOP, Harris-Affine, Hessian-Affine SR, PCBR and
SSS. The proposed detection responds to most of the sesactlatected by
the remaining detectors. Only SFOP and SSS detect the cefntine star.

elements under zoom and scale changes. The Bikes sequencst
shows a scene with man-made objects under de-focus blur.
Finally, the UBC sequence depicts a scene composed of man-
made and natural objects, which has been corrupted by JPEG
compression. Flgure 8 shows the output of SSS detection El)gg 8. Examples of SSS detection. Top row: Grafitti refeesincage (detail),
the reference images of two sequences (Graffiti and UBC).pottom row: UBC reference image (detail).

Figure 9 depicts the repeatability results. One can readily
see that SSS tend to appear in higher number. Regardless of
the sequence, the SSS detector yields the highest numbestudws the worst performance, either in terms of repeatybili
correspondences, while its repeatability score is contppata score, or in terms of the number of correspondences.
those of its counterparts. In comparison with MSERs, SSS aré/Ve have also analysed the accuracy of the detectors. The last
more robust to blur and JPEG compression. MSERs exhibito columns in Fig. 9 show the number of correspondences
a slightly higher repeatability score for viewpoint chasge and the repeatability score as a function of the overlaprerro
the Graffiti sequence as well as for the zoom and rotatién higher overlap error yields more correspondences and a
variations in the Boat sequence. However, the number kifjher repeatability score. We verify that SSS is an aceurat
correspondences between MSERs is considerably lower. W&ector as well as MSER and PCBR detectors. HARAFF and
note that a substantially higher number of correspondenddéiSSAFF detectors tend to improve their ranking as the operla
accompanied by a slight decrease of the repeatability ratereases, which means that the regions retrieved by these
is often preferable to a minor increase of the repeatabililetectors are the less accurate among the different types of
with less regions, since in the former the absolute number afine covariant regions.
repeated regions is considerably higher, which might glevi We have also analysed the trade-off between the number
a better coverage of the content with a similar repeatgbilibf correspondences and the repeatability score for diftere
score. Apart from viewpoint changes, the PCBR detectstability thresholds as in [14]. This analysis has beennsidd
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Fig. 9. Absolute and relative repeatability results. Fist: Graffiti, second row: Wall, third row: Boat, fourth rovgikes, fifth row: UBC. The first and
second columns show the number of correspondences andpbatability score, respectively, with an overlap error 696 The third and fourth columns
depict the number of correspondences and the repeatatutitthe third image of each sequence as the overlap erroesvamithe range 10%—-60%.



100 PV designed to preserve the most relevant image content, which
-=-SSS

80 makes it suitable to solve object recognition tasks. Thus, a

f\; ook 25 s o % 20 15 10 | future research direction is the evaluation of the perfarcea
E \V—fﬂ T of the SSS detector on object recognition problems.
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