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Abstract—We introduce Stable Salient Shapes (SSS), a novel
type of affine-covariant regions. The new local features are
obtained through a feature-driven detection of Maximally Stable
Extremal Regions (MSERs). The feature-driven approach pro-
vides alternative domains for MSER detection. Such domains
can be viewed as saliency maps in which features related to
semantically meaningful structures, e.g., boundaries andsym-
metry axes, are highlighted and simultaneously delineatedunder
smooth transitions. Compared with MSERs, SSS appear in higher
number and are more robust to blur. In addition, SSS are
designed to carry most of the image information. Experimental
results on a standard benchmark are comparable to the results
of state-of-the-art solutions in terms of repeatability score. The
computational complexity of the method is also worth of note,
as it is lower than those of most of the competing algorithms in
the literature.

I. I NTRODUCTION

Local image feature detectionis a prolific and prominent
research topic for the computer vision community. It has
proved to be an effective tool in the resolution of a number of
vision problems, including stereo vision, image matching and
object recognition. The main purpose of local feature detection
is to provide a reliable image representation by identifying a
sparse set of visually relevant image regions.

Local feature detection is closely related tofeature descrip-
tion, which aims at summarising the local images patches
covered by the detected regions. Some applications requirea
local feature detection that is covariant with a class of image
transformations, e.g., affine ones. A covariant region detection
will potentiate an effective invariant description with respect
to the same class of image transformations.

In the particular case of affine covariant detectors, many
approaches have been suggested in the literature. We will
shortly review the most prominent solutions; we refer the
reader to the work of Tuytelaars et al. [1] and references within
for a more detailed and comprehensive review.

The Hessian-Affine (HESAFF) and the Harris-Affine
(HARAFF) detectors [2], [3] are two popular affine covariant
solutions based on image derivatives. The former is a combina-
tion of a multi-scale Harris-Stephens interest point detector [4]
with an affine shape adaptationscheme [5]. From initial esti-
mates of interest points detected at their characteristic scales,
the algorithm converges to affine covariant locations via an
iterative process – the so-called affine shape adaptation–,that

estimates elliptical affine covariant regions around the interest
points, whose shape is defined by the structure tensor matrix.
In the same manner, the Hessian-Affine detector adopts the
affine shape adaptation scheme; however, the initial estimates
are given by the determinant of the Hessian matrix.

The major shortcoming of the Hessian-Affine and the
Harris-Affine detectors is their computational complexity, as
they areO((s+i)p) algorithms, wheres denotes the number of
scales used in the automatic scale selection, which determines
the characteristic scale,i is the number of iterations used in
the shape adaptation mechanism, andp is the number of points
from the initial estimate.

Affine covariant regions can also be derived fromextremal
regions. In the image domain, an extremal region corresponds
to a connected component whose corresponding pixels have
either higher or lower intensity than all the pixels on its bound-
ary. Extremal regions hold two important properties: the set of
extremal regions is closed under continuous transformations
of image coordinates as well as monotonic transformations
of image intensities. The Maximally Stable Extremal Regions
detector [6] responds to extremal regions that are stable with
respect to intensity perturbations. In its original implementa-
tion, the MSER detector enumerates extremal regions using
a union-find algorithm, whose complexity isO(n log log n),
wheren denotes the number of pixels. The high repeatability
rates shown by the MSER detector in structured images and
the suitability of MSERs to be described either by photometric
or by shape descriptors [7], [8] have made the MSER detector
a prominent reference in the literature.

In this paper, we extend the work presented in [9] to propose
a new type of affine covariant features, Stable Salient Shapes
(SSS), which are the result of performing a feature-driven
detection of Maximally Stable Extremal Regions.

The first step of the algorithm provides saliency maps that
will be posteriorly used as domains for MSER detection. In
such maps, features that are linked to semantically meaningful
structures – such as boundaries and symmetry axes –, are
highlighted. Unlike the original edge-driven MSER detection,
this extended version contains a combined feature highlight-
ing, which allows the detector to retrieve a higher number of
regions without redundancy. Our algorithm overcomes major
limitations of a standard MSER detection, namely the sensitiv-
ity to image blur, the presence of a reduced number of regions,



and the biased preference for regular shapes. All of this is
achieved without significantly increasing the computational
complexity of the algorithm.

II. BACKGROUND AND MOTIVATION

The main motivation for our work comes from the well-
known advantages in obtaining affine covariant regions from
extremal regions as well as the shortcomings that such strategy
entails. For a better understanding of our motivation, we will
start by providing the basic terminology and the formal defi-
nitions around the concepts of extremal regions and MSERs.

A. Preliminaries and Definitions

Let us denote byimage I the mappingI : D ⊂ Z
2 →

{0, 1, . . . , M}. A connected component(or region) Q in D
is a subset ofD for which each pair of pixels(p, q) ∈ Q2

is connected by apath in Q, i.e., there is a sequence
p, a1, a2, . . . , am, q ∈ Q such thatp ∼ a1, a1 ∼ a2, . . . , am ∼
q, where∼ denotes the equivalence relation defined by(p ∼
q) ⇐⇒ max{|p1 − q1| , |p2 − q2|} ≤ 1 (8-neighbourhood).

We define theboundaryof a regionQ as the set∂Q =
{p ∈ D\Q : ∃q ∈ Q : p ∼ q}. A connected componentQ in
D is anextremal regionif ∀p ∈ Q, q ∈ ∂Q : I(p) < I(q) or
I(p) > I(q).

Let Q1,Q2, . . . ,Qi−1,Qi, . . . be a sequence of extremal
regions such thatQk ⊂ Qk+1, k = 1, 2, . . . . We say thatQi

is amaximally stable extremal regionif and only if thestability
criterion

ρ(k, ∆) =
|Qk+∆ \ Qk|

|Qk|
, (1)

attains a local minimum ati, where∆ is a positive integer
denoting thestability threshold. As area ratios are preserved
under affine transformations,ρ is an affine invariant measure.
Consequently, MSERs are covariant with these geometric
transformations.

We note that the detection of MSERs is related to image
thresholding, since every extremal region is a connected com-
ponent of a thresholded image [1]. In fact, we can alternatively
describe the detection of MSERs as a process that considers all
the possible thresholdings of an intensity image. An extremal
region is considered maximally stable if it shows a small
area change across several thresholdings [10]. By increasing
the threshold, we detect MSERs+, which correspond to dark
regions with brighter boundaries. MSERs−, which are brighter
regions with dark boundaries, can be obtained through the
same process by inverting the input intensity image.

B. Extremal Regions and Maximally Stable Extremal Regions:
downsides

Some of the major limitations of MSER detection have
been summarised in the comparative study on affine covariant
regions performed by Mikolajczyk et al. [11]. In this study,
MSERs and regions detected with the Hessian-Affine detector
have shown higher repeatability scores. However, the former
has shown an inconsistent performance: sequences of images
with different levels of blur as well as textured sequences have

produced less repeatable MSERs. If we take into account that
MSERs tend to anchor on region boundaries — which suggests
that the method is more suitable to deal with well-structured
scenes [1] –, one can expect less repeatable results on textured
scenes. The sensitiveness to image blur is explained by the
undermining effect that it has on the stability criterion.

Another important downside of MSER detection is related
to the number of regions that the detector retrieves. MSERs
tend to be in lower number than other regions retrieved by
detectors such as the Hessian-Affine or the Harris-Affine. A
reduced number of features may not provide the best coverage
of the content, which impairs the robustness of the method to
object occlusions.

Kimmel et al. [12] have observed that the affine covariance
of MSERs is verified if and only if objects possess smooth
boundaries. As the affine covariance of MSERs is an immedi-
ate consequence of the covariance of the image level sets with
affine transformations of the coordinates, it is required that the
point-spread function of camera lenses is small compared to
the natural blurring of objects. The authors have also notedthat
the stability criterion as defined in (1) prefers regular (round)
shapes to irregular ones. This bias for regular shapes has been
demonstrated by showing that if two regions have the same
area and the same intensity along the boundaries, the one with
a shorter boundary will yield a lower value ofρ.

C. Refinements on the MSER detector

The MSER detector has been extended to deal with colour
images [10] and video sequences [13]. It has also been subject
to several refinements. In [8], Forssen introduced an alternative
MSER detector that makes use of a multi-scale pyramid
representation with one octave between scales. This multi-
resolution approach detects MSERs at each resolution and
duplicated regions at consecutive scales are removed by dis-
carding fine scale MSERs with similar locations and sizes as
regions detected at the next coarser scale. The multi-resolution
MSER detector produces a higher number of regions and is
more robust to image blur and scale changes. On the downside,
it requires a detection at each scale, which increases the
computational complexity of the algorithm. The algorithm for
the detection of Stable Affine Frames (SAFs) [14] can be
regarded as a refinement on the MSER detector. SAFs lie on
the boundary of extremal regions. Unlike MSERs, the stability
of SAFs with respect to intensity perturbations is measured
locally, i.e, we do not require the whole boundary to be
stable to intensity changes. This algorithm produces a higher
number of features and covers more evenly the image content.
Moreover, SAFs are more repeatable in the presence of image
blur. On the downside, the method requires a considerably
higher computational effort.

Kimmel et al. [12] free the MSER detector from the prefer-
ence towards regular shapes by presenting several redefinitions
of the stability criterion, which prefer irregular shapes and are
still affine invariant. The main goal of these reinterpretations
is to define more informative shape descriptors.



III. STABLE SALIENT SHAPES

At a first glance, the ideal image for the MSER detector is
the one that is well structured, with uniform regions separated
by strong intensity changes [1]. However, the affine covariance
holds for MSERs if and only if the boundaries of the objects
in the scene are smooth [12]. These are the principles in which
the SSS detector is based on. As we have stated in the intro-
ductory section, we can succinctly describe the construction of
Stable Salient Shapes as a feature-driven detection of MSERs,
where such features correspond to structures related to objects
boundaries or even symmetry axes.

The first step of the proposed algorithm, coined asfeature
highlighting, consists in building a saliency map for each one
of the features to be highlighted. These maps are intended
to be suitable domains for MSER detection. There are two
main reasons for emphasising features related to structures
such as boundaries or symmetry axes. First, the semantic
meaningfulness of these structures is high as they carry a
relevant amount of image information, including fine details
[15], [16], [17]. Second, we note that the boundaries of
MSERs often correspond to objects boundaries. Since the
stability of an extremal region with respect to intensity changes
is measured at its boundary, we will be reshaping objects
boundaries to yield more stable extremal regions.

The subsequent step of the algorithm consists in detecting
MSERs on each of the saliency maps. We cannot expect a full
complementarity among the extremal regions detected along
the different maps, since they are related to the same structures.
The third and final step of the algorithm takes into account the
potential overlapping or even the duplication of MSERs and
performs a region pruning. Figure 1 depicts the main steps of
SSS detection.

Input 

Image

Stable

Salient Shapes

Feature

highlighting
MSER

detection

Region

pruning

Fig. 1. Algorithm for the detection of Stable Salient Shapes(feature-driven
MSERs). The first step of the algorithm produces saliency maps that will
be used in the next step as input images for MSER detection. The maps
emphasise features that are related to semantically meaningful structures, such
as boundaries and symmetry axes.

A. Feature highlighting

We perform the highlighting of edges and ridges by means
of two differential-based measures, which yield two different
saliency maps. Edges are undoubtedly important features inan
image, since they reflect the presence and the shape of objects

in a scene. Our algorithm relies on the structural information
provided by edges. Ridges are related to symmetry axes as they
often correspond to the major axis of symmetry of elongated
objects.

The first measure intends to highlight edges and, simultane-
ously, delineate smooth transitions at the boundaries, whereas
the second one highlights ridges while preserving the afore-
mentioned smoothness. The detection of structures at different
scales will help us to define smooth transitions. The process
of averaging information over scales is the key component to
obtain the desired smoothness. For the averaging procedure,
normalised Gaussian derivatives [18] are utilised.

1) Edge highlighting: We highlight edges and obtain
smooth transitions by making use of the gradient magnitude,
computed by means of Gaussian derivatives at several scales.
Let L(:, σ) be a smoothed version of imageI by means
of a Gaussian kernelG at the scaleσ2, i.e., L(x, σ) =
(G(σ) ∗ I)(x). The edge strength can be found by measuring
the gradient magnitude,

|∇L(x, σ)| =
√

L2
x(x, σ) + L2

y(x, σ), (2)

whereLx andLy denote the first-order partial derivatives of
L in thex andy directions, respectively. From (2), we obtain
our measure for edge highlighting:

F1(x) =
N

∑

i=1

σi |∇L(x, σi)| , (3)

where the standard deviationσi varies in a geometric sequence
σi = σ0ξ

i−1, with σ0 ∈ R
+, ξ > 1, andN denotes the number

of scales. The final image is, therefore, the result of averaging
gradient magnitude computed at different scales. By doing
this, with a reasonable number of scales, smooth transitions at
the edges will be obtained.

2) Ridge highlighting:The measure for ridge highlighting
derives from the Hessian matrix,

H(x, σ) =

[

Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]

, (4)

whereLxx, Lxy andLyy are the second order partial deriva-
tives ofL, a Gaussian smoothed version of imageI. Theprin-
cipal curvature[19], which highlights curvilinear structures is
either given by

Pmax(x, σ) = max(0, λ2(H(x, σ))), (5)

or
Pmin(x, σ) = min(0, λ1(H(x, σ))), (6)

whereλ1 and λ2 denote the minimum and maximum eigen-
values, respectively. We note that Eqs. (5) and (6) respond to
complementary structures: the former responds to dark lines
on a brighter background, whereas the latter detects brighter
lines on a dark background. From the principal curvature, we
obtain the measure for ridge highlighting:

F2(x) =

N
∑

i=1

σ2
i Pmax(x, σi), (7)



whereσi = σ0ξ
i−1, with σ0 ∈ R

+, ξ > 1, andN denotes the
number of scales.

Our ridge highlighting measure relies on the use of the
principal curvature measure to detect darker lines on a bright
background. However, the measures defined in (5) and (6)
can be used interchangeably, as we perform the enumeration
of extremal regions in the resulting saliency map as well as
in the inverted saliency map.

In Fig. 2, we depict the saliency maps that are the result
of the proposed edge and ridge highlighting, using a license
plate as the input image. It is readily seen that both saliency
maps preserve the structural information of the image and add
some smoothness to the scene. While the edge highlighting
mainly captures and accentuates the objects boundaries, the
ridge highlighting provides a clearer structural sketch ofthe
scene [19]. For the purpose of MSER detection, we can regard
the map that emphasises edges as a more suitable domain,
as it generates uniform regions separated by heavy intensity
changes and is less sensitive to noise. However, the second
map provides us complementary regions, whose detection is
important to improve the coverage of the content.

B. MSER detection and region pruning

Apart from the input image, there are no differences be-
tween the feature-driven MSER detection and the original
one, i.e., we assess the stability of extremal regions usingthe
original stability criterion. Figures 3 and 4 help to illustrate
the advantages of our feature-driven MSER detection over the
standard one. In Fig. 3, we depict two well-structured scenes
and the corresponding isophotes on the luminance channel
and on both of the saliency maps. Both maps show a higher
number of extremal regions, which can be increased with a
higher number of scales. Due to the Gaussian smoothing,
the irregularity of extremal regions is attenuated, which will
compensate the preference of the stability criterion for regular
shapes.

Figure 4 compares standard MSER detection with SSS
detection in the presence of Gaussian blur. As blur increases,
both types of regions decrease in number. However, this
reduction is more significant for MSERs. Forσ = 3, the
number of MSERS decreases 19%, whereas the number of
SSS decreases 11%. Forσ = 10, the number of MSERs
decreases 93%, while the number of feature-driven MSERs
decreases 53%. The example also shows that SSS are in higher
number and cover the most informative parts of the scene,
regardless of the amount of blur.

The two saliency maps do not provide fully complementary
regions. Thus, we eliminate regions that are duplicated. Tofind
duplicates, we compare the centroid distance. If this distance
is lower than 0.1, we compute the overlap error between the
corresponding fitted ellipses. If this error is less than 10%, we
discard the region with higherρ. Figure 5 depicts the proposed
region pruning. A previous pruning, which removes regions
based on the area or the stability measureρ, is performed on
each map. We will describe it in the upcoming section.

MSER

SSS

Original image Blurred image Blurred image
(σ = 3) (σ = 10)

Fig. 4. MSER and SSS detection on images with Gaussian blur (original
image,σ = 3 and σ = 10). Top row: MSER detection. Bottom row: SSS
detection. The detected regions are replaced by fitted ellipses.

SSS (edges map)

SSS(ridges map)

SSS (final)

Fig. 5. An example of the proposed region pruning. The detected regions
are replaced by fitted ellipses.

To conclude this section, we present the results of different
detectors on a Siemens star (see Fig. 6). The detection includes
the scale covariant SFOP regions [20] and affine covariant
features, such as MSERs, Principal Curvature-based Regions
(PCBRs) [19], SSS, Harris-Affine, and Hessian-Affine regions.
In this example, SSS cover the most informative content
without the presence of redundant regions. Moreover, most
of the content covered by other regions, is also covered by
SSS features .



Saliency maps
Input image Edges Ridges

I F1 F2

Fig. 2. An example of the proposed feature highlighting. Darker structures in the saliency maps are the most salient ones. To obtain the final saliency maps
– F1 andF2 –,12 scales were used. The parametersσ0 andξ were set to1 and 4

√
2, respectively.

 

 

 

 

Input Image Extremal regions Extremal regions Extremal regions
and isophotes and isophotes and isophotes

(luminance channel) (edges map) (ridges map)

Fig. 3. Regions delineated by isophotes on the different domains.

IV. EXPERIMENTAL VALIDATION

To experimentally assess the performance of the proposed
detector, we have followed the guidelines of the standard eval-
uation protocol proposed by Mikolajczyk et al. in [11], which
comprises image sequences with gradually increased effects of
geometric and photometric transformations, such as viewpoint
changes, scale changes, blur, and JPEG compression. Each
sequence contains six images and a ground-truth homography
is provided between the first image of the sequence and each
one of the five remaining images.

For the sake of clarity, the experimental validation has
considered state-of-the-art affine covariant detectors that have
been made publicly available. The list includes: the MSER
detector, the Hessian-Affine and the Harris-Affine detectors,
as well as the PCBR detector. We note that the latter has
not been suggested as a generic detector; Deng et al. suggest
it for object recognition. However, due to the fact that it
detects affine covariant regions from structural information
using a multi-scale approach, we have decided to include
it in the evaluation. Apart from the MSER detector, all the
implementations that we have used are the ones provided and
maintained by the authors. For the SSS and MSERs detectors,
we have made use of the code provided by Vedaldi and
Fulkerson [21]. In the case of the SSS detector, this code has
been modified to deal with images whose intensity values vary

in a range different from{0, . . . , 255}, since the saliency maps
intensity values might be greater than 255.

a) Parameter settings:We have built the saliency maps
with σ0 = 1, ξ = 4

√
2, andN = 12. The stability threshold

∆ was set to 20. For the MSER detector, this parameter was
set to 10. The minimum and maximum region area were set
to 30 and 1% of the image area, respectively, for both of
the detectors. In addition, we have only considered MSERs
and SSS whoseρ was lower than 0.7. As for the remaining
detectors, we have used the default parameter settings.

A. Repeatability evaluation

Repeatability is often regarded as the fundamental criterion
to assess the performance of local features. Mikolajczyck et al.
defined the repeatability score as the ratio between the number
of region correspondences and the smaller number of common
regions in a pair of images of the same sequence. As the shapes
of affine covariant regions are diverse, each region is replaced
by an approximating ellipse. The use of ellipses allows us to
define a repeatability score for a given overlap error.

We have performed our evaluation on five sequences (de-
picted in Fig. 7). The first one is the Graffiti sequence, which
contains a well-structured pattern under viewpoint changes.
The Wall sequence shows a textured sequence (brick wall)
under viewpoint changes. The Boat sequence depicts a rel-
atively textured scene composed of natural and man-made



Fig. 6. Local feature detection on the beams of a Siemens star[20]. Top
left to bottom right: SFOP, Harris-Affine, Hessian-Affine, MSER, PCBR and
SSS. The proposed detection responds to most of the structures detected by
the remaining detectors. Only SFOP and SSS detect the centreof the star.

elements under zoom and scale changes. The Bikes sequence
shows a scene with man-made objects under de-focus blur.
Finally, the UBC sequence depicts a scene composed of man-
made and natural objects, which has been corrupted by JPEG
compression. Figure 8 shows the output of SSS detection for
the reference images of two sequences (Graffiti and UBC).

Figure 9 depicts the repeatability results. One can readily
see that SSS tend to appear in higher number. Regardless of
the sequence, the SSS detector yields the highest number of
correspondences, while its repeatability score is comparable to
those of its counterparts. In comparison with MSERs, SSS are
more robust to blur and JPEG compression. MSERs exhibit
a slightly higher repeatability score for viewpoint changes in
the Graffiti sequence as well as for the zoom and rotation
variations in the Boat sequence. However, the number of
correspondences between MSERs is considerably lower. We
note that a substantially higher number of correspondences
accompanied by a slight decrease of the repeatability rate
is often preferable to a minor increase of the repeatability
with less regions, since in the former the absolute number of
repeated regions is considerably higher, which might provide
a better coverage of the content with a similar repeatability
score. Apart from viewpoint changes, the PCBR detector

Fig. 7. First images (reference images) of the sequences used in the
experiments. First row, from left to right: Graffiti, Wall, Boat. Second row,
from left to right: Bikes, UBC.

Fig. 8. Examples of SSS detection. Top row: Grafitti reference image (detail),
bottom row: UBC reference image (detail).

shows the worst performance, either in terms of repeatability
score, or in terms of the number of correspondences.

We have also analysed the accuracy of the detectors. The last
two columns in Fig. 9 show the number of correspondences
and the repeatability score as a function of the overlap error.
A higher overlap error yields more correspondences and a
higher repeatability score. We verify that SSS is an accurate
detector as well as MSER and PCBR detectors. HARAFF and
HESAFF detectors tend to improve their ranking as the overlap
increases, which means that the regions retrieved by these
detectors are the less accurate among the different types of
affine covariant regions.

We have also analysed the trade-off between the number
of correspondences and the repeatability score for different
stability thresholds as in [14]. This analysis has been extended
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Fig. 9. Absolute and relative repeatability results. Firstrow: Graffiti, second row: Wall, third row: Boat, fourth row:Bikes, fifth row: UBC. The first and
second columns show the number of correspondences and the repeatability score, respectively, with an overlap error of 40%. The third and fourth columns
depict the number of correspondences and the repeatabilityfor the third image of each sequence as the overlap error varies in the range 10%–60%.
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Fig. 10. Repeatability and matching results for the Bikes sequence (third
image), with an overlap error of 20%. Top row: number of correspondences
vs.repeatability score for different stability thresholds (10, 15, 20, 25), bottom
row: number of matchesvs. matching score for different stability thresholds
(10, 15, 20, 25).

to equally assess the trade-off between the matching score
and the number of matches using the SIFT descriptor [22].
Figure 10 shows these curves for the Bikes sequence, with an
overlap error of 20%. The matching score is computed as the
ratio between correctly matched regions and the number of
corresponding regions. With the SIFT descriptor, MSERs and
SSS tend to exhibit similar matching scores. However, as one
expected, the latter provides a considerably higher numberof
correct matches.

V. CONCLUSIONS ANDFUTURE WORK

We have introduced a novel type of affine covariant features,
Stable Salient Shapes (SSS), which are the result of perform-
ing a feature-driven MSER detection. The major motivation
for our work came from the well-known advantages and the
inherent drawbacks in obtaining affine covariant regions from
extremal regions. The goal of the first step of the algorithm
is to provide saliency maps that will be used as domains
for MSER detection. These maps are characterised by the
highlighting of features related to semantically meaningful
structures, e.g., boundaries, and the simultaneous presence of
smooth transitions at the boundaries. Our algorithm overcomes
major limitations of a standard MSER detection, namely the
sensitivity to image blur, the presence of a reduced number
of regions, and the biased preference towards regular shapes.
The experimental validation on a standard benchmark has
shown that SSS are comparable to the most prominent affine
covariant regions in terms of repeatability score. Concerning
the absolute repeatability, our algorithm compares favourably
to state-of-the art solutions. Moreover, our solution is efficient;
it combines an already efficient MSER detection with a
computationally inexpensive image filtering. Our detectorwas

designed to preserve the most relevant image content, which
makes it suitable to solve object recognition tasks. Thus, a
future research direction is the evaluation of the performance
of the SSS detector on object recognition problems.
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