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Abstract

Tasks such as image retrieval, scene classification, aedtaigicognition often make
use of local image features, which are intended to providdiahie and efficient image
representation. However, local feature extractors arigded to respond to a limited set
of structures, e.g., blobs or corners, which might not bécent to capture the most
relevant image content.

We discuss the lack of coverage of relevant image informditiplocal features as well
as the often neglected complementarity between sets afrésat As a result, we pro-
pose an information-theoretic-based keypoint extradtiahresponds to complementary
local structures and is aware of the image composition. Wargally assess the valid-
ity of the method by analysing the completeness, compleanigntand repeatability of
context-aware features on different standard datasetdedhese results, we discuss the
applicability of the method.

1 Introduction

Local feature extraction is a prominent and prolific reskdopic for the computer vision
community, as it plays a crucial role in many vision tasks.caldfeature-based strategies
have been successfully used in numerous problems, suctdasbaseline stereo matching
[1, 17, 30], content-based image retrievald, 25, 29|, object class recognitiors| 21, 2€],
camera calibratiord], and symmetry detectiod]. The key idea underlying the use of local
features is to represent the image content by a sparse sdissftsegions or (key)points. By
discarding most of the image content, we save computatidiimaprove robustness as there
are redundant local image patches rather than a limited euoflylobal cues{§).

The desired properties of a local feature extractor areatdidtby its application. For
example, matching and tracking tasks mainly requirepeatable and accurate feature ex-
traction. The objective is to accurately identify the same featuoeess a sequence of im-
ages, regardless of the degree of deformation. It is notaetdf the set of features fails to
cover the most informative image content. On the other htasks such as object (class)
recognition, image retrieval, scene classification, analgencompression, requirer@bust
image representatiof81]. The idea is to analyse the image statistics and use logaltes to
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Figure 1: Proposed keypoint extraction: (a) Context-avkasgoints on a well-structured
scene (100 most informative locations); (b) A combinatiboamtext-aware keypoints (green
squares) with SFOP keypoint§ [(red squares) on a highly textured image.

capture relevantimage content. Here, the requiremenépeftability and accuracy become
less relevant.

This paper focuses on the problem of providing a robust feabased image represen-
tation. Our contribution is a feature extractor aimed atecing the most informative image
content. The proposed algorithm, coined as Contex-Awarngéiat Extractor (CAKE),
responds to complementary local structures and is awarkeofimage composition. We
follow an information-theoretic approach by assuming tihat so-called salient locations
correspond to points within structures with a low probaypitif occurrence, which is in ac-
cordance with a plausible characterisation of visual salig3]. We are motivated by the
fact that the majority of local feature extractors makesrgjrassumptions on the image con-
tent, which can lead to an ineffectual coverage of the cdrjter8]. Here, the idea is not
to formulate any a priori assumption on the structures thightrbe salient. Moreover, our
scheme is designed to take advantage of different locaéseptations (descriptors).

A context-aware extraction can respond to features wittasamable degree of comple-
mentarity as long as they are informative. For images witmyrgpes of structures and
patterns, one can expect a high complementarity among #terés retrieved by a context-
aware extractor. Conversely, images with repetitive pastenhibit context-aware extractors
from retrieving a clear summarised description of the comntén this case, the extracted
set of features can be complemented with a counterpartahvéves the repetitive elements
in the image. To illustrate the above-mentioned advantagesdepict these two cases in
Figurel. The left image shows a context-aware keypoint extractiora avell-structured
scene, retrieving the 100 most informative locations. Bhigll number of features is suffi-
cient to provide a good coverage of the content, which inetuskveral types of structures.
The rightimage depicts the benefits of combining contexarakeypoints with strictly local
ones (SFOP keypoint8]) to obtain a better coverage of textured images.

2 Related Work

We will provide a brief, yetillustrative, description oflstions that have contributed towards
establishing local feature extraction as a mature reséapit. For a more complete review,
we will refer to the work of Tuytelaars and MikolajczyR]] and references within.
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A large family of local feature extractors is based on lodéfedential geometry. The
Harris-Stephens keypoint extractor is a well-known exargdlan algorithm based on lo-
cal differential geometry: it takes the spectrum of the dtite tensor matrix to define a
saliency measure. The Scale Invariant Feature Operat@R$P)] also relies on the struc-
ture tensor matrix. It responds to corners, junctions ancufar features. This explicitly
interpretable and complementary extraction is a result wfified framework that extends
the gradient-based extraction previously discussed]iarid [23] to a scale-space represen-
tation [15]. The Hessian matrix is often used to extralib-like structureseither by using
its determinant— it attains a maximumldbb-like keypoints- or by searching for local ex-
trema of the Laplacian operator, i.e., the trace of the Fegsiatrix. The Harris-Laplacé§]
is a scale covariant region extractor that results from ¢meliination of the Harris-Stephens
scheme with a Laplacian-based automatic scale selectiba.HBrris-Affine schemelp],
an extension of the Harris-Laplace, relies on the comhinadif the Harris-Laplace opera-
tor with an affine shape adaptation sta@é]] Similarly, the Hessian-Affine extractot.§]
follows the same affine shape adaptation, however, theligstimate is taken from the de-
terminant of the Hessian matrix. Some extractors rely galalthe intensity image, such as
the Maximally Stable Regions (MSERS) extractdy]| which retrieves stable regions (with
respect to intensity perturbations) that are either beight darker than the pixels on their
outer boundaries. IriL[)], Gilles proposes an information-theoretic algorithmypeints cor-
respond to image locations at which the entropy of locahisity values attains a maximum.
Kadir and Brady 11] introduce a scale covariant salient region extractorcihastimates
the entropy of the intensity values distribution inside gioa over a certain range of scales.
Salient regions in the scale space are taken from scalesielh Wte entropy is at its peak.
In [12], Kadir et al. propose an affine covariant version of theaptwr introduced inJ1].
Dickscheid et. al$] suggest a local entropy-based extraction, which usestinemy density
of patches to build a scale-space representation. Thistdénexpressed using a model for
the power spectrum that depends on the image gradient asel. noi

3 Context-Aware Keypoint Extraction

Our context-aware keypoint extraction is formulated inrgioiimation theoretic framework.
We define saliency in terms of information content: a keypoorresponds to a particular
image location within a structure with a low probability ofaurrence (high information
content). We follow Shannon’s definition of informatio®7]: if we consider a symbas,

its informationwill be given byl (s) = —log(p(s)), wherep(-) denotes the probability of a
symbol. In the case of images, defining symbols is complext@dontent of a pixek is
not very useful, whereas the content of a region around the would be more appropriate.
We can considew(x) € RP, any viable local representation, e.g, the Hessian madsx,
a “codeword” that represents We can see the image codewords as samples of a mul
variate probability density function (PDF). In the litewes, there is a number of methods
to estimate an unknown multi-variate PDF with a sufficientiver of samples. Among
all, we have decided to use the Parzen density estimagprdlso known akernel Density
Estimator(KDE). The KDE is appropriate for our objective since it ismparametric, which
will allow us to estimate any PDF, as long as there is a sufftai@mber of samples. Using
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the KDE, the probability of a codewomd(y) is

-3 (St "

whered is a distance functiorK is a kernelh is a smoothing parameter calleandwidth

@ is the image domain, and represents the number of pixels. The idea of the KDE method
is to blur the contribution of each sampteby spreading it to a certain arealRP with a
certain shape, which is defined By If K has compact support, or decreases as a function
of the distancel, then codewords in dense areas of the multi-variate digtab will have
higher probability than isolated samples. There are séekoaces for the kernel. The most
commonly used and the most appropriate for our method is &édiménsional Gaussian
function with zero mean and standard deviatigh Using a Gaussian kernel)(becomes

Nr ; < 20k (X))>’ @

whereh has been substituted by the standard deviatipand[l™ is a proper constant such
that the estimated probabilities are taken from an actu&l PIaving defined the probability
of a codeword, we can define the saliency measure as follows:

2
My, 1(@)) = - log (Nlr Z@e(—%}kﬂx”)) , @

wherel denotes the image. In this case, context-aware keypoititsaviespond to local
maxima ofm(-, | (®)) that are beyond a certain threshald

To conclude, we need to define a distance functioand set a proper value toy.
AQuI!

Thedistanced We definew, the set of all the multi-variate samples\&s= [JycqW(X).
Being %y, the covariance matrix dfV, we define the followingMahalanobis distance
dm(w(x),w(y)) = \/(w(x) —w(y)) Tt (w(x) —w(y)). By considering the aforementioned
distance, the following property can be drawn:

Property 1. Letw!Y) andw®) be codewords such that® (x) = T(w¥(x))), where T is
an affine transformation. Let'd and g? be the probability maps of¥) andw@), i.e.,
pM(-) = pw)(-)), i=1,2. In this case,

PP (x) < pP@(xm) = pPY(x1) < P (Xm), VX1, Xm € P.

The smoothing parameter oy  The parameteoy can potentially vanish the ability of the
method to adapt to the image contexigifis too large, the KDE over-smoothes the estimated
PDF, which cancels the inherent PDF structure due to the eéntagtent. On the other
hand, if gy is too small, the interpolated values between differentdascould be very
low, such that there is no interpolation anymore. We prog@ostategy, in the case of an
univariate distribution, to determing;, an optimaloy, aiming atsufficient blurringwhile
having thehighest sharpe®DF between samples. For our purposes, we can use univariat
distributions, since we approximate the KDE computatidresd-dimensional multi-variate
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PDF by estimatindD separate univariate PDFs (s&ependiy. Having a series dfl samples
w, we define the optimady for the given distribution as

Swew)? —(wewigg)?
dle 202 +e 202
1 dw,

V2no dw

(4)

. " Wit
Uk =alg maX/
o>0, W

wherew; andw;_ 1 is the farthest pair of consecutive samples in the distigbutlt can be
demonstrated that, by solving)( we haveoy = |wi —wi;1|. It can also be demonstrated
that foro < |w; —wi;1] /2, the estimated PDF between the two samples is concaveh whi
provides insufficient smoothing.

4 Hessian-based CAKE instance

In this section, we introduce an instance of the contextrawayponit extractor. Different
instances are given by considering different local repregons.

The notion of saliency is related to rarit¢(, 11]. What is salient is rare. However,
the reciprocal is not necessarily valid. The discrimingiower of the codewords has to be
analysed. A highly discriminating codeword will turn evdogation into a rare structure;
nothing will be regarded as salient. On the other hand, wiisa discriminating codeword,
rarity will be harder to find.

The Hessian matrix (Eq.5]) appears as a suitable intrinsic codeword for an instanc
that provides . Furthermore, the inclusion of multi-scalenponents provides a framework
to design an instance characterized by a quasi-scaleiaavaxtraction. We define the
codeword for the multi-scale Hessian-based instance as

W(x):[thXX(x;tl) thxy(x;tl) 2L,y (Xt)  tLa(Xt) tly(X.t) 2Ly (X,t)
Pla(tn) ELy(Gtv)  t2Ly0Gtu) |7,

where wherelyy, Lyy andLyy are the second order partial derivativeslofa Gaussian
smoothed version of the image, andvithi = 1,... M, represents the scale.

5 Experimental Validation and Discussion

We have evaluated and compared the performance of the Hdsas&®d CAKE instance
(which we will refer to as [HES]-CAKE) using three criterieompleteness, complementar-
ity, and repeatability. We can quantify completeness aatheunt of image information that
is preserved by a set of features. Complementarity is agodaticase of completeness anal-
ysis: it reflects the amount of image information coded bg eépotentially complementary
features §]. The repeatability score is a measure that ascertains hegigely an extractor
responds to the same locations under several image trameions, which reflects the level
of covariance and robustness. The experiments were pextbom the Oxford datase? ()
and on the dataset used by Dickscheid et al. for completevasigation §]. The latter com-
prises four categories of natural scen&3 [L4], the Brodatz texture collectior2] as well as

a set of aerial images. Example images from this datase&egietdd in Figure2.
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With the aim of comparison, we have also evaluated the padace of some of the
leading algorithms on scale or affine covariant featureaexion: the Hessian-Laplace (HES-
LAP), the Harris-Laplace (HARLAP), the Scale Invariant feea Operator (SFOP), and the
Maximally Stable Extremal Regions (MSER) extractor. Thelementations are the ones
given and maintained by the authors and default parametmesused.

Tablel outlines the parameter settings for the CAKE instance. Ve that our extractor
retrieves more features than its counterparts. For a failuation of repeatability, we have
defined a threshold to avoid a considerable discrepancyindimber of features.

Table 1: [HES]-CAKE parameter settings.

[HES]-CAKE

Number of scales 12

tiy1/t (ratio between successive scale levels) 1.19

to (initial scale) 14

Non-maximal suppression window 3x3

T (threshold) 12 or 3000 keypoints (for the Oxford datadétpe (otherwise)
Ok optimal

Ngr (number of samples, ségpendiy) 200

The evaluation protocols require regions rather than kieypoWe use the normalized
Laplacian operatof,’L, = t?(Lxx + Lyy), to determine the characteristic scale for each de-
tected keypoint, which, in this case, corresponds to theabmehich the normalized Lapla-
cian attains an extremum. This scale defines the radius otalai region centered about
the keypoint.

The non-optimised Matlab implementation of [HES]-CAKE eéak on average, 272.3
seconds to process an 80800 image.

roatz Aerial st ' o tai’n aII uilding Kitchen
(30 images) (28 images) (328images) (374 images) (356 im)age(210 images)
Figure 2: Example images from the categories in the dataset.

5.1 Completenessand complementarity

To measure completeness, Dickscheid etd@lcdmpute an entropy densitpy (X), based on
local image statistics, which is not context aware, and afeaoding densityp.(x), derived
from a given set of features. The (in)completeness measuresponds to thelellinger dis-

tancebetween the two distributionsty (pH, pc) = \/% Y xeaw(v/PH(X) — v/Pc(X))2. When
pu andpc are very closegly will be small, which means that the set with a coding dengity
efficiently covers the image content, i.e., the set has a tighpleteness. We note that this
measure penalises the use of large scales (which is a tfoaigard solution to achieve full
coverage of the content) as well as the presence of featupesé homogeneous regions. On
the other hand, it rewards the “fine capturing” of local dfnoes or superimposed features
appearing at different scales.

Figure3 outlines the completeness results for each image categayre?2), in terms

of the distances between distributigmg andpc. As in [5], we have plotted the ling= \/%
which corresponds to an angle of 90 degrees betvpgeand p.. Any distance beyond this
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threshold will correspond to a pair of “sufficiently differ® densities. Regardless of the
image collection, the [HES]-CAKE achieves the best congpless scores. The complete-

[l [HES]-CAKE]
0.7071| BB HESLAP
CJHARLAP
0.6|EsFoP

Bl VSER

Brodatz Aerial Forest Mountain Tall Building Kitchen

Figure 3: Average dissimilarity measudg (pn, pc) for the different sets of features ex-
tracted over the categories of the dataset.

ness and complementarity scores obtained from the thirdérmaeach Oxford sequence are
reported in Figuré.

Figure4 also shows the results of our complementarity evaluatiom.iMportant con-
clusion to be drawn is that combining features such as SF@QHHREBES]-CAKE provides
more than sufficient coverage of relevant content in the @kflmtaset. The combination of
MSER with SFOP or [HES]-CAKE features is equally advantage &FOP mainly extracts
corners and junctions, whereas the MSER algorithm usualtipets more homogeneous
regions. This complementarity is particularly disceraitlhen analysing the results for se-
quences such as “Trees” or “Wall”.

In [5], Dickscheid et al. report the low complementarity scon@®ag Laplacian-based
sets of features, e.g., HESLAP and HARLAP, which can alsonfferied from the addi-
tional experiment with the Oxford dataset. On the other h#imel combination of the new
set of features with the above mentioned ones does not imfihabset with redundancy.
The combination of HESLAP and [HES]-CAKE yields the most giete set for “Bark”,
whereas the set of features retrieved by the former is thenithethe lowest completeness
score. We give a particular emphasis to this result sindeoitvs that we are not extracting
the same keypoints as the HESLAP. In fact, we are buildingt @fskeatures that can be
complementary to the one retrieved by the other method.

5.2 Repeatability

Although CAKE was designed for robust image representati@nhave also evaluated the
repeatability using the benchmark proposedi@].[ Figure reports the average repeatability
score of the different algorithms for each sequence in thim@xdataset, with an overlap
error of 40%. In most of the sequences, SFOP and CAKE show pa@hle performance,
which is slightly worse than the one of HESLAP.

6 Conclusions and Perspectives

We have presented a keypoint extraction scheme that makesf iescal information and is
aware of the image composition. The notion of saliency idieitly used in the algorithm:
we compute a descriptor of the neighbouring area for evewl pind keypoints correspond
to locations at which the information content is a local nmaxin.
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0.7071

0.4

0.3

0.2

Graffiti Wall Boat Bark Bikes Trees Leuven

[l [Hessian]-CAKE [ Hessian—Laplace[_JHarris-Laplace[]SFOP [MSER

E Bl [HES]-CAKE+HESLAP

0.0 Hll[HES]-CAKE+HARLAP

[l [HES]-CAKE+SFOP
0.8| CJ[HES]-CAKE+MSER

0.7071 [ JHESLAP+HARLAP

: [C_JHESLAP+SFOP

0.6| CJHESLAP+MSER

[ HARLAP+SFOP

.5| Bl HARLAP+MSER

4 [l sFOP+MSER

Graffiti Wwall Boat Bark Bikes Trees Leuven uBC

Figure 4: Dissimilarity measuréy (pH, pc) for different sets of features extracted from the
third image in each Oxford sequence.

We have analysed the possible shortcomings that charsei®ur approach, especially
the problem in estimating the probability of the inhererstidbutions in a way that it could
reduce the computational complexity of the method and sanebusly make it comparable
to state-of-the-art solutions in terms of repeatabilitgf@nd completeness.

While context-aware features are not be the most suitalilerofor tasks such as wide-
baseline stereo matching and tracking, they become an japgt® choice for robust image
representation, as the algorithm implicitly tries to cotrer parts of the image that are infor-
mative, and this is reflected into the excellent completesesres according to the metric
defined in p]. In fact, the results of our method are comparable to th¢ dess outlined
in the evaluation. The complementarity between contexdravieatures and traditional ones
is high, especially in textured scenes. We believe, theeefinat the applicability of our
method can be found in tasks such as scene classificatiogginedrieval, object (class)
recognition, and image compression.

Appendix Reduced KDE

Propertyl tells us that applying an affine transform to a codeword da¢schange the result of the
extractor. We take advantage of this, and perform a prihcipaponent analysis (PCA). L& be the

new codeword distribution, in whiclp(x) are its elements. In this case, the inverse of the covariance
matrix Xy, is a diagonal matrix, where the diagonal elements contarirterse of the variance of
every variable of the multivariate distributiép. Therefore, we can write the Gaussian KDE &), (
using the Mahalanobis distandg (-, -), as another Gaussian KDE with Euclidean distance as

5 218 (Wej (y) —wej(x)?
Blwp(y)) NF Zo ( L 202 >7 (6)
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40

20,

Graffiti Wall Boat Bark Bikes Trees Leuven

Il (HES]-CAKEEHESLAP [_JHARLAP [ sFop IlMSER

Figure 5: Average repeatability with an overlap error of 40&¢he Oxford dataset.

wherea; = /3,1 (i.i). Equation 6) can be rewritten as

i (Wei (y) —Wei(x))?
Plwe(v)) Nr Zerl ( Zak ) )

Assuming that each dimensidanprovides a PDF that is independent of other dimensions, we ca
approximate 7):

B(w rlzeexp< (W yiokwp' ) |‘lp. Wei (y ®)

The approximation is only valid if PCA is able to separate ringtivariate distribution into indepen-
dent univariate distributions. While this is not alwaysifred, the proposed approximation works
sufficiently well for convex multivariate distributions,hich is the case in all the experiments that we
have conducted in this paper.

We have reduced a multivariate KDE Bounivariate problems, which simplifies the computation
of distances. Furthermore, we can approximatelXtome dimensional KDEs to speed-up the process
For the sake of compactness and clarity, in the next parteoséetion we will refer tqTwpj(y)) as
p(w(y)). We will also omit the constant/NI" and the constant.

We can extend the concept of KDE, by giving a weigtt) > 0 to each sample, so that the
univariate KDE can be rewritten as a reduced KDE:

B 2
priw(y) = ¥ v(x>e<_M>, ©

2
20y

where®r C ®. This formulation can be seen as an hybrid between a Gausgi&nand a Gaussian
Mixture Model. The former has a large number of samples,fatiem with unitary weight and fixed
Ok, while the latter has a few number of Gaussian functiond) eae with a specific weight and stan-
dard deviation. The goal of our speed-up method is to obtagtdg with |®r| = Ny < N samples that
approximate th€(N?) KDE. The main strategy is to fuse samples that are close ehehiato a new
sample that “summarizes” them. Given a desired number opkesiNR, the algorithm progressively
fuses pair of samples that has the minimum distance, asillo

1. Pr«— D

2. V(X) —1,Vxed

3. while|®g| > Nr do

4: {Xo,%X1} —arg min - [w(Xg) —W(X1)|
X0, X1 EPR, Xo#X1
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5 V(Xo1) —V(Xo)+V(X1)
6. i) Y s

7 DR — (CDR\{)?oﬁ(l})U{XOJ_}

8: end while
The algorithm uses as input thesamples of the univariate distribution (line 1), giving stant weight
1 to the samples (line 2). While the number of points is gretlian Ng (line 3 to 8), the algorithm
selects the pair of samples that shows the minimal distanteei set®r (line 4), and a new sample
is created (lines 5 and 6), whose weigtis the sum of the pair's weights amndis a weighted convex
linear combination of the previous samples. The two setestenples are then removed frabg and
replaced by the new one (line 7).

To further speed-up the approximation, we can use a redusether of dimension® < D such
that the firstdt" dimensions of the multivariate distributidhb cover 95% of the total distribution
variance. This is a classical strategy for dimensionakyuction that has provided, in our tests, an
average of & further speed-up.
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