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Abstract. IntraVascular UltraSound (IVUS) is a technique allowing the
diagnosis of coronary plaque. An accurate (semi-)automatic assessment
of the luminal contours could speed up the diagnosis. In most of the
approaches, the information on the vessel shape is obtained combining
a supervised learning step with a local refinement algorithm. In this
paper, we explore for the first time, the use of a Convolutional Neural
Networks (CNN) architecture that on one hand is able to extract the
optimal image features and at the same time can serve as a supervised
classifier to detect the lumen border in IVUS images. The main limitation
of CNN, relies on the fact that this technique requires a large amount
of training data due to the huge amount of parameters that it has. To
solve this issue, we introduce a patch classification approach to generate
an extended training-set from a few annotated images. An accuracy of
93% and F-score of 71% was obtained with this technique, even when it
was applied to challenging frames containig calcified plaques, stents and
catheter shadows.

1 Introduction

Atherosclerosis is a progressive disease affecting arterial blood vessels caused
by an inflammatory response of the wall followed by the accumulation of fat
and tissues on the vascular membrane. Arteriosclerosis is particularly danger-
ous because, if not treated, it can totally obstruct the artery and lead to stroke.
IntraVascular UltraSound (IVUS) is a clinically available imaging technique pro-
viding real-time hi-resolution cross-sectional sequences of images of the coronary
artery in patients. It is an essential mean to quantify and characterize coronary
plaque, for diagnostic purposes and for guiding percutaneous coronary interven-
tion (PCI).

The procedure for the acquisition of an IVUS sequence consists of insert-
ing an ultrasound emitter, carried by a catheter, into the arterial vessel and
dragging the probe from the distal to the proximal position. This procedure
generates an orderer set of high amount of frames denoted as pullback. The
standard IVUS image is a 360-degree tomographic cross-sectional view of the
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vessel walls, denoted as short-axis view, which allows an accurate assessment of
vessel morphology. Given an angular position on the short-axis view (indicated
in Figure 1-a by a green line), the corresponding longitudinal view can be gener-
ated by considering the gray-level values of the sequence along the diameter at
the chosen angle (Figure 1-b). This longitudinal image depicts the morphology
of the vessel section according to the selected orientation.

(a) (b) (c)

Fig. 1. Short-axis view of a vessel in cartesian coordinates (a) and longitudinal view
of the same pullback (b). General Scheme of a CNN classifier (c).

The IVUS sequence can be represented as I (x, y; t), where x and y are the
spatial coordinates of the image, and t is the index of a frame in a pullback.

1.1 Related Work

Since a typical pullback contains more than 3000 IVUS frames, an accurate
(semi-)automatic assessment of lumen and media contours is highly desirable to
reduce the workload of the medical doctor, and to speed up the diagnosis.

Manual lumen and media segmentation is a laborious task that suffers from
inter- and intra-observer variabilities due to the high amount of noise and ar-
tifacts present on the IVUS images. Consequently, much work has been per-
formed on (semi-)automated IVUS image processing as illustrated by Katouzian
and Balocco in recent reviews [9, 1]. Observing such surveys, in most of the
approaches, the information on the vessel shape is obtained in two phases: a)
pre-processing supervised learning step is initially applied in order to roughly
identify the region of the image containing the contour, b) an active contours
technique is then initialized using the classification results in order to locally
segment the membrane border.

One of the most promising techniques for supervised learning are the Con-
volutional Neural Network (CNN), which are mathematical models consisting
of multiple layers of small neuron collections. Every neuron in a convolutional
layer represents the response of a filter applied to the previous layer. The job of
this neuron is to pass this response through some non-linearity. The area of the
previous layer that this filter is applied to, is called the receptive field of that
neuron. CNNs were initially introduced in a 1980 paper by Kunihiko Fukushima
[4], later LeCun [11], successfully applied these concepts to computer vision
problems. In recent years, the rise of efficient GPU computing made possible to
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train larger networks increasing the number of layers [7]. One major advantage
of CNNs is the use of shared weights in convolutional layers, which means that
the same filter is applied for different pixels in the layer, this both reduces re-
quired memory size and improves performance [10]. Another advantage is that
the network is responsible for learning the filters that in traditional algorithms
were hand-engineered, which means that the network has the ability to learn
by itself which are the most discriminative shapes, colours and textures in the
image for the problem at hand.

The ability of a CNN to recognize complex patterns varies depending on the
number of layers. For instance, the first convolution layer extracts the low-level
features, like edges, lines and corners, while the deeper the layers, the higher-level
is the information they provide (see Figure 1-c). In each layer, the parameters of
every convolution kernel is trained by the back-propagation algorithm. In order
to reduce the dimensionality problem, pooling layers compute the maximum or
average value of a particular feature over a region of the image, hence it chooses
only the best features and eliminates the others.

The main limitation of using CNN, is that this technique requires a large
amount of training data due to the huge amount of parameters that it has. A
common solution is to train the network on a large data-set, once the network pa-
rameters converged, an additional training step is performed using the in-domain
data to fine-tune the network weights. This allows convolutional networks to be
successfully applied to problems with small training sets.

In medical images applications, several approaches of CNN use have been
proposed [5], being a good example the one from Cernazanu-Glavan and Hol-
ban [3], who designed a convolutional network able to segment bone struture
in X-ray images. Their approach consists in a CNN with three convolutional,
three max-pooling and two fully-connected layers that offer a binary classifica-
tion. In [2], Brebisson and Montana apply a similar approach, but on MRI brain
images, classifying each voxel to its corresponding anatomical region from mul-
tiple 2D patches, a 3D patch and a centroid distances vector. Recently, Havaei
et. al. [6] presented a fully automatic brain tumor segmentation method based
on CNNs, high performance is achieved with the help of a novel two-pathway
architecture (which can model both the local details and global context). Up to
our knowledge, no work has been applied on IVUS segmentation until now.

1.2 Motivation

In this paper, we explore the use of a CNN architecture to detect different
patterns in IVUS images. We focus on the analysis of a novel machine learning
method aimed at classifying the pixel containing the lumen membrane. The main
advantage of CNN with respect to the other classifiers is that it is able to extract
contextual information around of a target pixel. We decided to leave for a future
study the complete lumen segmentation and the comparison versus the other
state of the art segmentation methods.

Although some recent CNN architectures provide the ability to directly seg-
ment complete images [13], they need thousands of annotated samples (i.e. im-
ages with their corresponding desired segmentations) to be trained. Instead,
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by using a patch classification approach, we are able to generate an extended
training-set from a few annotated images thus allowing the process of CNN
training.

2 Method

2.1 Materials

One hundred images have been selected from 7 IVUS pullbacks of different pa-
tients. The Imaging System used for the acquisition is an iLab IVUS (Boston
Scientific, Freemont), equipped with a 40 MHz catheter Atlantis SR 40 Pro.
The IVUS images were selected in order to represent typical IVUS configura-
tions, such as, healthy vessels, eccentric (calcified, fibrotic and lipidic) plaques,
catheter shadows, and frames containing a stent, as illustrated in Figure 2.

(a) (b) (c) (d)

Fig. 2. IVUS image samples in polar view. In (a), main areas of interest, (b) normal,
(c) calcified plaque, (d) guide-wire shadow and stent struts

The IVUS frames were converted in polar coordinates and having height and
width of 255 x 360 pixels. In general, the exploration depth of the IVUS image
chosen by the physician led to polar images in which the lumen area occupies
only the upper part of the frame while the vessel border occupies the remaining
bottom area.

2.2 CNN Architecture

In order to identify the lumen border contour, a pixel-wise classification was
performed. Instead of classifying all the image context at once, the classifier
was optimized to be able to identify specific image details. In our experiment,
the network has been trained to discriminate between patches belonging to the
lumen border or not.

Considering the nature of the IVUS images, encoded in grayscale values and
having very basic texture patterns, the strategy proposed by [3] was chosen. We
used the LeNet architecture [12] as a base model. This network consists of two
convolutional layers and is only able to learn small and local patterns (suitable
for the original digit classification problem). In order to provide the ability to
capture local and global patterns, which is necessary for IVUS images, a third
convolutional layer with the same parameters as the second one was introduced.
An overview of our CNN architecture is presented in Figure 3.
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Fig. 3. Proposed CNN Architecture

2.3 Training-set patches extraction

On each IVUS image, a curve defining the interface between the lumen and
the vessel has been manually annotated by an expert, along with the catheter
shadow area (Figure 4-a). The region of the lumen curve, hidden behind the
catheter shadow, has been removed, since in that region the border outline is
ambiguous. The obtained contour was enlarged by morphological dilation to 5
pixels wide in order to cover all the thickness of the visible lumen membrane. In
such way, the region of the image used as Ground Truth mask shown in Figure
4-b (red curve) has been obtained.

In order to extract training patches from the pixel lying close to the image
borders, each IVUS frame has been extended on each side by adding a strip
composed of pixels from the opposite side of the image, mirrored with respect
to the image axis as shown by the yellow dotted lines in Figure 4-b. For the
upper edge, a black patch was added since the catheter area does not contain
any relevant textural information.

Patches with sizes of 101x51 pixeles (0.65 mm x 0.32 mm) were extracted.
The set of patches is obtained following a sliding window strategy, i.e. scanning
the entire image from the top left to the bottom right pixel and cropping the
area surrounding Ix,y named as target pixel (tp). An uneven size of the patch is
chosen: the bounding box of the patch crop is horizontally centered with respect
to the tp, but vertically located at 25% of the crop height. The size of the patch
has been chosen in such way that the CNN will be able to learn that the lumen
is always present above of its visible membrane and to cover the surrounding
tissues such as media membrane and plaque. Each patch is finally labeled as
lumen border depending if tp belongs to the lumen-border (LB) mask or not
(¬LB), (Figure 4-b).

The available IVUS images were grouped in three non-overlapping sets: train-
ing (TrS), validation (V S) and test (TeS), composed of 18, 12 and 70 images,
respectively. In such way considering 55.800 patches per image, we obtain around
1.000.000 and 500.000 patches, for the TrS and V S data-sets, respectively.

2.4 Numerical implementation

The Caffe [8] framework was used to train the neural network. To speed up the
training time and to keep the memory usage in optimum levels a GPU GeForce
GTX 780 was used. The network training was parametrized with a learning
rate (lr) of 10−6 a momentum of 1 − lr and a weight decay of 5· 10−4 and
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(a) (b)

Fig. 4. In (a), IVUS image annotations, indicating lumen border and guide shade are
shown. In (b), two exemplar patches (squared rectangles), when the tp (green circle)
falls into the lumen-membrane area (in red), it is labeled as lumen-border. Otherwise
it is annotated as not-lumen-border. The blue arrows indicate that the leftmost and
rightmost texture stripes have been copied and mirrored.

parallelized in batches of 50 patches. The criterion to select an optimal network
was a trade-off between a high accuracy and low loss value, tested every 500
training iterations. The optimal training configuration was reached as a snapshot
at iteration 14000 after only 30 minutes, the accuracy and loss on V S was 94%
and 0.15, respectively.

3 Results

Classification performance in several IVUS cases (including stent, plaque or guide
shadow frame) was qualitative illustrated in Figure 5. Additionally, the results
of the classification obtained over the test-set (TeS) were reported in Table 1.
3.1 Qualitative results

In order to fairly illustrate the classification performance, the results were grouped
in three categories, namely “good”, “average”, and “poor” classification results,
corresponding to frames having a F − score ranging between 0 - 0.5 (poor), 0.5
- 0.75 (average) and 0.75 - 1 (good), respectively. The three most representative
images of each group are presented in Figure 5.

In most of the frames the result of the classification follows the ground-truth
curve. Although the appearance of the lumen and media membranes might be
similar in some cases, the pixels belonging to the media incorrectly classified as
lumen are few as can be seen in Figure 5-f. The classification of the lumen border
is poor only when the lumen-border is blurry (Figure 5-g and 5-h).

The robustness of the approach can be appreciated in several challenging
clinical cases such as frames containing stent or calcium (Figure 5-b and 5-c).
The low performance obtained in the upper area of the image observed in Figures
5-g, 5-h and 5-i), is due to the proximity of the lumen to the catheter guide. Such
area was manually removed from the images used in the training set, and it has
not been learned by the classifier.
3.2 Quantitative results

A total of 4�106 pixels composing the test-set (TeS) were classified in 17 minutes
(15 seconds per image) approximately. The performance of CNN classification
is shown in Table 1.



Lumen Border detection in IVUS Images using CNN 7

Good , 30/70 images of TeS

(a) (b) (c)

Average, 36/70 images of TeS

(d) (e) (f)

Poor, 4/70 images of TeS

(g) (h) (i)

Fig. 5. Samples of qualitative results on TeS. In each image three curves can be seen,
the red is the ground-truth traced by the expert, the green is the classification result
achieved by the CNN, the overlapping area is represented in yellow.

Accuracy Sensitivity Specificity Precision F-score

All the test-set 0.93 0.80 0.95 0.64 0.71

Normal (16 frames) 0.93 0.72 0.95 0.61 0.66

Presence of Stent (30 frames) 0.93 0.83 0.95 0.64 0.73

Presence of Calcium (26 frames) 0.93 0.80 0.95 0.63 0.70

Table 1. Quantitative results on TeS

It is interesting to note that when the image contains stents and calcified
plaques, the classification indicators are higher compared to normal images. Al-
though this seems counterintuitive, this can be explained by the fact that CNN
classifies pixels using contextual information, by learning the presence of defined
patterns such as the presence of plaque or stent below the membrane.

4 Conclusions

A new approach aimed at classifying the pixel containing luminal border for
successive lumen segmentation has been presented. The main strength of our
approach consists in using a convolutional neural network as automatic pixel
classifier on IVUS images.

In contrast with previous approaches, in which the performances of the al-
gorithm decreased when challenging frames were analyzed, the results of the
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classifier were acceptable (F-score of 71%) on all the analyzed frames categories
(images containing stent, calcium plaques and guide shadows). Future work will
be addressed towards identifying a lumen border contour, allowing the compar-
ison against the state of the art segmentation techniques [1].
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