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Abstract. Detection of lane markings based on a camera sensor can be
a low cost solution to lane departure and curve over speed warning. A
number of methods and implementations have been reported in the lit-
erature. However, reliable detection is still an issue due to cast shadows,
wearied and occluded markings, variable ambient lighting conditions etc.
We focus on increasing the reliability of detection in two ways. Firstly, we
employ a different image feature other than the commonly used edges:
ridges, which we claim is better suited to this problem. Secondly, we
have adapted RANSAC, a generic robust estimation method, to fit a
parametric model of a pair or lane lines to the image features, based on
both ridgeness and ridge orientation. In addition this fitting is performed
for the left and right lane lines simultaneously, thus enforcing a consis-
tent result. We have quantitatively assessed it on synthetic but realistic
video sequences for which road geometry and vehicle trajectory ground
truth are known.

1 Introduction

A present challenge of the automotive industry is to develop low cost advanced
driver assistance systems (ADAS) able to increase traffic safety and driving
comfort. Since vision is the most used human sense for driving, some ADAS
features rely on visual sensors [2]. Specifically, lane departure warning and lateral
control can be addressed by detecting the lane markings on the road by means of
a forward–facing camera and computer vision techniques. In this paper we focus
on this problem, which is one of the first addressed in the field of ADAS. Many
papers have been published on it, since it is a difficult and not yet completely
solved problem due to shadows, large contrast variations, vehicles occluding the
marks, wearied markings, vehicle ego–motion etc. Recent reviews of detection
methods can be found in [1,2].

The main contributions of this paper are three. The first one is to employ
a different low–level image feature, namely, ridgeness, to obtain a more reliable
lane marking points detection under poor contrast conditions (section 2). Aside
from this practical consideration, conceptually, a ridge describes better than an
edge what a lane line is: the medial axis of a thick, brighter line. Secondly, we have
adapted RANSAC, a generic robust estimation method, to fit a parametric model
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Fig. 1. Left: road image with a region of interest (ROI) outlined. Right: ROI seen
as a landscape, where lane markings resemble mountains and ridges correspond
correspond to the center of the lane markings.

to the candidate lane marking points, using as input data both ridgeness and
ridge orientation (section 3). Thirdly, we quantitatively assess the method with
regard to four quantities derived from the segmented lane markings: vehicle yaw
angle and lateral offset, lane curvature and width. This is possible on synthetic
sequences, for which we know exactly the value for these parameters since they
are provided as input to the program which generates them ( section 4). Section
5 draws the main conclusions and comments future work. A previous version
of this work was presented in [3]. However, it did not include the validation on
synthetic sequences and the pair of lane lines model was different.

2 Lane Markings as Ridges

Ridges of a grey–level image are the center lines of elongated, bright structures.
In the case of a lane line is its longitudinal center. This terminology comes from
considering an image as a landscape, being the intensity the z axis or height,
since then these center lines correspond to the landscape’s ridges (figure 1).
Accordingly, ridgeness stands for a measure of how much a pixel neighborhood
resembles a ridge. Therefore, a ridgeness measure must have high values along
the center of the line and decrease as the boundary is approached. A binary ridge
image, corresponding to the centerline, can be obtained by simple thresholding,
provided we have a well–contrasted and homogeneous ridgeness measure.

This notion of ridge or medial axis is a simpler and, as we will see in short,
computationally better characterization of lane lines than that provided by
edges. Instead of defining (and trying to find out) a lane line as points between
two parallel edge segments with opposite gradient direction, a ridge is the center
of the line itself, once a certain amount of smoothing has been performed. And
this amount is chosen as the scale at witch ridges are sought.

There are different mathematical characterizations of ridges. In [4] a new one
is proposed which compares favorably to others and that we have adapted for
the problem at hand. Let x = (u, v) be the spatial coordinates (u columns, v
rows). Then, ridgeness is calculated as the positive values of the divergence of
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Fig. 2. Image acquisition geometry.

the normalized gradient vector field w̃ of the image:

κ̃σd,σi(x) = −div(w̃σd,σi(x)) (1)

The parameter σd is the differentiation scale, in opposition to σi which is the
integration scale. The former must be tuned to the size of the target structures,
while the later determines the size of the neighborhood we want to use in order
to compute the dominant orientation.

We only take into account those pixels x for which κ̃σd,σi(x) > 0.25, a value
fixed experimentally but with a large margin before the selected pixels change
significantly. Due to perspective, the imaged lane lines width decreases with
distance. In order not to miss them, σd also decreases with the row number so
that upper rows are less smoothed than lower rows.

Interesting properties of κ̃σd,σi(x) are invariance to image translation and
rotation, as one would expect, but also to monotonic grey–level transforms. The
later greatly helps in lane detection in presence of shadows and low contrast
conditions, opposite to gradient–based measures. Shadows cast by vehicles and
road infrastructure (like fences, tunnel entries, lamp posts) give rise to long and
straight contour lines which can fool edge–based lane detection methods.

3 Lane model and fitting

3.1 Lane lines model

A number of geometrical models for the projected lane lines have been proposed,
from simple straight lines to quadratic, spline and other polynomial curves, with
the aim of performing a good image segmentation. However, few are built on a
sound geometrical base like in [6]. There it is shown that, under several reason-
able assumptions (flat road, constant curvature), a lane line on a planar road is
projected onto the image plane as an hyperbola. Admittedly, this is not a new
model, but what that work reveals are the relationships among model param-
eters and meaningful and interesting geometrical entities such as lane width,
curvature and the vehicle’s lateral position, which we want to compute in order
to validate our method, aside of their own evident applicability in ADAS.

As illustrated in figure 2, the camera coordinate system has Y axis coin-
cident with the vehicle’s direction and sustains an angle θ ¿ 1 rad. with the
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road tangent line (also referred as yaw angle). It also forms an angle ϕ with the
road plane (pitch angle). The lane has width L and the camera is located at a
horizontal distance of dr meters from the right border and at height H above
the ground. Of course, L, dr, θ and ϕ may vary over time, but H is supposed
constant. Finally, let be Eu and Ev the focal lengths in pixels/meter along the
horizontal and vertical camera axes, and the image origin centered in the prin-
cipal point (intersection of the optical axis with the image plane). Then, the
following equation relates (ur, vr), the pixel coordinates where the right lane
line is imaged, to the road parameters it belongs to [6]:

ur = Eu

(
θ

cos ϕ
+

dr cos ϕ

HEv
(vr + Ev tanϕ) +

EvHC0/ cos3 ϕ

4(vr + Ev tan ϕ)

)
(2)

The former equation clearly follows the formulation of a hyperbola with a
horizontal asymptote. In order to enforce parallelism of lane borders, we intro-
duce a new variable xc, which is the signed distance along the X axis between
the camera projection on the road plane and the central axis of the left lane line
(figure 2). It follows that dr = xc −L, dl = xc and we have the following couple
of equations, for points (ul, vl), (ur, vr) on the left and right border, respectively:

ul = Eu

(
θ

cosϕ
+

cos ϕ

HEv
xc(vl + Ev tan ϕ) +

EvHC0/ cos3 ϕ

4(vl + Ev tan ϕ)

)
(3)

ur = Eu

(
θ

cosϕ
+

cos ϕ

HEv
(xc − L)(vr + Ev tan ϕ) +

EvHC0/ cos3 ϕ

4(vr + Ev tanϕ)

)

Since parameters Eu, Ev,H and ϕ can be estimated through a camera cal-
ibration process [7], equation (4) is linear with respect to the four unknowns
θ, xc, L and C0. It can be compactly rewritten as

[
1 0 v′l 1/v′l
1 −v′r v′r 1/v′r

]



a1

a2

a3

a4


 =

[
ul

ur

]
(4)

with v′r = vr/Ev + tan ϕ, v′l = vl/Ev + tan ϕ and

θ =
cos ϕ

Eu
a1, L =

H

Eu cos ϕ
a2, xc =

H

Eu cosϕ
a3, C0 =

4 cos3 ϕ

EuH
a4 (5)

Note that according to this model, four points, not all on the same line, define
a pair of hyperbolas sharing the same horizontal asymptote. In addition, they
correspond to two parallel curves L meters apart, when back projected to the
road plane. This implies that we are going to fit both left and right lane lines
at the same time and enforcing parallelism, that is, consistency in the solution.
Besides, the sparsity of candidates in one lane side due to shadows, occlusions
or dashed lane marks can be compensated by those in the other side.
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3.2 Model fitting

A minimum of four points are necessary in order to solve equation (4), provided
there is at least one point on each curve. If more points are known, we get an
overconstrained system that is solved in the least–squares sense. The problem,
of course, is the selection of the right points among all candidates from the
previous detection step. We need a robust technique in the sense of, simulta-
neously, classify candidate points into lane points (inliers) and not lane points
(outliers, at least for that side), and perform the fitting only to the former ones.
RANSAC, which stands for Random Sample Consensus [9], is a general estima-
tion technique for such purpose based on the principle of hypotheses generation
and verification.

An observation must be made concerning the lane model of equation (4).
In it we supposed the pitch angle ϕ known from the calibration process, but
actually it suffers variations around its nominal value due to non–planar roads,
acceleration, brake actioning etc. To account for this fact, quite influential in the
instantiated model because it changes its horizontal asymptote, we test several
possible values for ϕ, taking nϕ equispaced samples within ϕ±∆ϕ.

4 Results

As pointed out in a recent survey on video–based lane departure warning [10],
results in the literature are often presented only in the form of several frames,
where the reader can check the correspondence between detected lane lines and
real lane markings. We also present results in this qualitative way, but just to
show examples of challenging situations (see figure 3). However, since our fitted
model has a direct relation to geometrically meaningful parameters of interest
in the context of ADAS, we base the evaluation on the comparison of these
computed values with the actual ones. The construction of digital road maps at
lane line resolucion is a research issue in itself. Therefore, we have resorted to
build a simulator which generates sequences of synthetic but realistic images of
3D roads of known geometry.

The simulator, implemented in Matlab, models the road geometry, photome-
try and the camera focal length, trajectory and pose with regard a world coordi-
nate system. Whereas the camera roll angle has been fixed and yaw depends on
the trajectory, the pitch angle ϕ has not, since it is responsible for the horizon
line vertical motion, which is not static in real sequences. Besides, it turns out
that this parameter is quite influential on the results. Thus, we have randomly
varied the pitch angle so as to mimic the effects of 1) uneven road surface and 2)
acceleration and brake actioning, both observed in real sequences. Specifically,
pitch variation is generated by adding two random noises: the first one of high
frequency and small amplitude (≤ 0.2◦) and the second one of low frequency but
larger amplitude (between 0.5◦ and 1◦), which account respectively for the two
former pitch variation sources.

We have performed several tests on synthetic sequences in order to calculate
the error in the estimation of C0, L, θ, xc and also ϕ on a 5 Km long road, one
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Fig. 3. Segmented lane line curves. From left to right and top to bottom : dashed
lines, occlusion, tunnel exit, special road marks, shadows, night image with re-
flections. Complete sequences from which these frames have been extracted can
be viewed at www.cvc.uab.es/adas/projects/lanemarkings/IbPRIA07.html.

frame per meter. Sudden slope changes introduce large errors, though logically
localized in time, whereas almost no error is observed at curvature changes. At
frames where the pitch variation has its largests peaks (t = 380, 720, 1200, 1450),
the error is small for xc, moderate for L but large for C0 and θ (figure 4, due
to space limitations, we do not include the figures for all the parameters). The
reason is that xc and L are local road measures very close to the camera position
and thus not affected by the global lane line shape, specially its shape at a large
distance, close to the horizon line. On the contrary, C0 and θ do depend on
the global shape (according to the road model, the curvature is supposed to
be constant) which is in turn dependent on the shared lane lines horizontal
asymptote. In addition, a small amplitude noise appears elsewhere mainly due
to the small amplitude pitch variation.

We have tried to minimize the effect of pitch changes (both large and small)
by considering ϕ another parameter to estimate. The second row of figure 4
shows the result for nϕ = 7 and ∆ϕ = 1◦. Close examination of the estimated
pitch angle allows us to conclude that the best pitch search is often able to
correctly estimate it (the four largest pitch variations are well detected), but not
always. The most prominent errors are localized around the four slope changes,
where this simple approach of guessing the best pitch fails. Elsewhere, a sort
of impulsive error is observed, caused by a small number of inliers. In spite of
it, a causal median filter (median of a number of pitch estimations before the
current frame) produces an acceptable result, even for a small nϕ. Finally, figure
5 shows the root–mean square error between computed and ground truth for four
different values of nϕ, and also for their median filtered versions. Whereas there
is only a slight improvement, or even no improvement at all, when nϕ increases,
the error of the filtered parameters clearly decreases. Therefore, it seems that it
does not pay to look for the best pitch if no filtering is performed afterwards.

www.cvc.uab.es/adas/projects/lanemarkings/IbPRIA07.html�
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Fig. 4. Ground truth and computed xc (left) and C (right) for (top to bottom):
nϕ=1 and 7 pitch angles around nominal camera pitch, and median filtering of
this latter result.
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Fig. 5. Root-mean square error of computed xc, θ and C0 (angles in degrees)
nϕ =1, 3, 7 and 41. In each pair, left bar corresponds to the computed value and
right bar to its causal median filtered version.

5 Conclusions

We have developed a new method for the extraction of lane lines from video
sequences. Robustness is achieved both in the feature detection phase, where we
employ an image feature well suited to this problem, and in the model fitting
phase, which we have addressed with the RANSAC approach. This method relies
just on images, that is, we do not take into account data from other vehicle
sensors, like the steering angle or yaw rate. Also, we have avoided any kind of
result post processing: each frame is processed independently of the others. The
reason is that our aim was to build a ’baseline’ system to which add later filtering
and data fusion to improve the result. Our lane line extraction method has the
advantage of computing four road and vehicle trajectory parameters which are
of interest in the context of ADAS. We have compared the computed values with
ground truth from a synthetic but realistic road. The present implementation of
feature detection, model fitting and parameter computation runs in real–time,
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at 40 ms/frame on a 2 Ghz Pentium IV, no matter if the image is synthetic
or real. From these experiments we conclude that we can compute reasonable
estimations of road curvature, width and vehicle lateral position and direction,
even in the case where the road does not follow the assumed model of flatness,
constant curvature and known camera pitch. However, the weak point of our
method is the estimation of the pitch angle, which we expect to predict on the
basis of previous frames.
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