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Evaluation of Methods
for Ridge and Valley Detection

Antonio M. López, Felipe Lumbreras, Joan Serrat, and Juan J. Villanueva, Member, IEEE

Abstract—Ridges and valleys are useful geometric features for image analysis. Different characterizations have been proposed to
formalize the intuitive notion of ridge/valley. In this paper, we review their principal characterizations and propose a new one.
Subsequently, we evaluate these characterizations with respect to a list of desirable properties and their purpose in the context of
representative image analysis tasks.

Index Terms—Creases, separatrices, drainage patterns, comparative analysis.
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1 INTRODUCTION

HE flow of water over the Earth’s surface develops an
arrangement of ramified dry channels that form the so-

called drainage pattern, which is of high interest in the field
of Hydrology. Accordingly, from the last century, research-
ers have tried to characterize it mathematically, prompting
a fruitful debate [3], [2], [19], [12], [26]. As a result, other
interesting geometric entities were defined and later adopted
for image analysis, the field in which the debate has followed
[13], [24]. From now on, we will term the drainage patterns
and any approximation to them as valleys. By ridges we will
refer to the valleys of the inverted relief.

In image analysis, the ridge/valley characterizations
must be evaluated with regards to their usefulness in spe-
cific applications. This paper assesses the merits of the main
characterizations by testing them in several types of image
analysis problems. In Section 2, we classify and review the
most widespread characterizations. In Section 3, we intro-
duce a new ridgeness/valleyness measure that will be shown
to outperform existing ones. In Section 4, we propose a set
of desirable properties that ridge/valley detectors should
possess, and we present the types of applications in which
ridges/valleys are usually required. Section 5 evaluates the
different ridge/valley methods in the context of the pro-
posed properties and applications. Finally, in Section 6 we
draw the main conclusions.

2 CHARACTERIZING RIDGES AND VALLEYS

Firstly, some notation. L : W  ± Rd � G ± R will always denote

a d dimensional function and J Ln[ ] =  { / }� � � =
j

j j
nL i i1 0K  its

local jet of order n, where "k ³ �,j : ik ³ ;d, ,j being a set of inte-

ger indices from 1 to j and ;d = {x1, ¡, xd} the coordinate sys-

tem. We also define the operators ¶ = (�/�x1, ¡, �/�xd) and

¶¶ = (¶t ¼ ¶) to obtain the gradient and the Hessian of any

function. Given any two vectors v = (v1, ¡, vd)t and w = (w1,

¡, wd)t in ;d coordinates, we can define the first order partial

derivative of L along v as Lv  = ¶L ¼ (v/ivi), and the second

order one along v and w as Lvw = (vt/ivi) ¼ ¶¶L ¼ (w/iwi). If

xi ³ ;d, Lxi  will refer to �L/�xi.

We classify the different ridge/valley characterizations
as:

�� Local. When the classification of a point x ³ W as
ridge/valley depends on a local test based on Jn[L](x).
We term as creases both the ridges and valleys defined
by such a test. Some of these tests provide a degree of
ridgeness/valleyness (creaseness).

�� Global. When the classification of a point x ³ W as
ridge/valley depends on image features arbitrarily far
away from x. For instance, the algorithms that divide
W into districts by special lines called separatrices.

�� Multilocal. At each point x ³ W, the classification de-
pends on the jets at points in a region of influence,
which can be a predefined neighborhood, or can de-
pend on the particular geometry of the image. This
last case includes the drainage patterns.

2.1 Creases
Saint-Venant identified ridges/valleys in 2D as loci of
minimum gradient magnitude along the relief’s level
curves [3]. This condition was later reformulated by
Haralick [13], [10] as loci of extremal height of L in the di-
rection along which L has the greatest magnitude of its sec-
ond order directional derivative. Haralick’s idea is ex-
tended to d dimensional images in [5] under the name of
height condition. If |l1| � ¡ � |ld| are the eigenvalues of
¶¶L and v1, ¡, vd their corresponding eigenvectors, then a
nD crease (1 � n � d) is characterized as:

" ³ ¶ ¼ =-i Ld n i, v 0
and
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if ridge
if valley .                               (1)
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In 2D, ridges/valleys have been also identified [7], [29] as
positive maxima/negative minima of the curvature of the
relief’s level curves, k. These maxima are connected from one
level to the next, forming a subset of the so-called vertex
curves. In d dimensions we generalize the level curves of L
to level sets. A level set of L consists of the set of points 6l =
{x ³ W : L(x) = l} for a given constant l. Then, if |k1| � ¡ �
|kd| are the principal curvatures of the level hypersurface 6l
and t1, ¡, td their corresponding principal directions, a nD
crease (1 � n � d) is characterized as (adapted from [5]):

 " ³ ¶ ¼ =-i d n i i, k t 0
and

t t
t t

i i i i

i i i i

t

t
and if ridge
and if valley .

¼ ¶¶ ¼ < >
¼ ¶¶ ¼ > <

%&K'K
k k
k k

0 0
0 0

            (2)

The 2D vertex condition “positive maxima/negative
minima of k ” can be translated to “high values of |k|”
where k > 0 measures ridgeness and k < 0 valleyness. In 2D
as well, when the height condition holds, we have v1 = v
and l1 = Lvv, where v = (Ly, – Lx)

t is the tangent vector of the
level curves of L. Then, Lvv can be seen as a creaseness
measure: if Lvv is high, then there are more chances that the
highest value in magnitude of the second order directional
derivative is reached along v. The measures Lvv and k  are
related by

k = - = - - +L L L L L L L L L L Lx y xy y xx x yy x yvv w/ ( )/( ) /2 2 2 2 2 3 2 , (3)

where w = (Lx, Ly)
t is the 2D gradient vector of L. In this

way, Lvv can be considered as the measure k  weighted by
the gradient magnitude in order to nullify its response at
isotropic regions. However, this is a tradeoff since Lw is also
lower on the center of a ridge/valley region than it is on its
boundary. In [18] the family of operators L Lvv w

a a, - � �1 0
was defined, where a controls the tradeoff. The same
authors defined the 3D operators L Lpp w

a  (ridgeness if nega-
tive) and L Lqq w

a  (valleyness if positive), where p and q are
the principal directions of the level surfaces and, in this
case, w = (Lx, Ly, Lz)

t.

2.2 Separatrices
Let us call slopelines the curves that follow the landscape
gradient direction. In 2D, Maxwell [19] defined basins as
districts whose slopelines come from the same minimum,
and hills as districts whose slopelines reach the same
maximum. He called watersheds the slopelines dividing a
landscape into basins, and watercourses the ones dividing
it into hills. These watersheds/watercourses were sup-
posed to coincide with the ridges/valleys previously de-
fined by Cayley [2] as slopelines going from maxi-
mum/minimum to maximum/minimum through a sad-
dle point. However, the slopeline going from maximum to
maximum is a watershed only if the two maxima are dif-
ferent points (analogously for minima and watercourses).
If not, the slopelines are called virtual separatrices which,
together with the watersheds/watercourses, form the
separatrices of the landscape [8].

More recent work has brought separatrices as a tool for
image analysis [20], [9], [25]. Special attention should be
paid to the efficient algorithms presented in [30], [1] to ex-
tract the watersheds of a d dimensional image, which, al-
though designed for discrete spaces, “converge” on the
definition in the continuous domain [21]. They are based on
an immersion process analogy of the image landscape. In
2D, imagine we pierce each minimum of the landscape and
we plunge the landscape into a lake with a constant vertical
speed. The water entering through the holes floods the
landscape’s surface. During the flooding, two or more
floods coming from different minima may merge. We want
to avoid this event, and we build a dam on the points of the
surface where the floods would merge. At the end of the
process, only the dams emerge and they constitute the wa-
tershed of the landscape. Watercourses are obtained by ap-
plying this algorithm to the inverted image.

2.3 Drainage Patterns
Some authors [13] affirm that the proper mathematical
characterization of the drainage patterns is due to R. Rothe,
although others do not agree [24]. In an idealized land-
scape, the water flows downhill along slopelines (steepest
slope routes). Therefore, Rothe [26] identified valleys as
(parts of) slopelines where others converge to form a chan-
nel stream and eventually join in a minimum (maybe at
infinity). On the other hand, researchers working with real
topographic data such as digital elevation models (DEMs)
[22], [4] extract drainage patterns directly by simulating the
flow of water over the Earth’s surface, known as runoff. Af-
ter the simulation, drainage lines of different relevance are
identified by their water accumulation.

An efficient simulator for 2D images can be found in
[27]. It relies on first eliminating all the local minima and
the planar areas to ensure the continuity of streamlines.
Then, the initial accumulation at each pixel is set to one.
Next, the runoff is simulated by ordering the pixels in de-
creasing height, and following the ordered sequence by
traveling from each pixel to its neighbor with the lowest
height, adding the accumulation of the previous pixel to
the next.

3 MULTILOCAL CREASENESS

In [16] we reported that operators such as k, Lvv, Lpp, and Lqq
give rise to discontinuities at places where we do not expect
any meaningful reduction of creaseness because they are the
center of elongated grey-level objects, that is, at places that
have a qualitatively similar anisotropic distribution of inten-
sities to other points where these operators work well. We
argued that the problem comes from their very local nature.
Therefore, we proposed several new creaseness measures
based on a multilocal approach. The details of how these
measures were designed and the study of their properties are
beyond the scope of this paper and can be found in [15].
However, since all the creaseness measures described in Sec-
tion 2.1 are local, we thought that it would be interesting to
include one of these new multilocal operators in the com-
parative evaluation of this paper. We describe briefly the one
based on the so-called structure tensor.
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Let w x x x( ) ( ( ), , ( ))t= L L
x xd1 K  be the gradient vector of

L at x ³ W, and G(x; s) the d-dimensional Gaussian of stan-
dard deviation s, centered at x. We define the structure ten-
sor at x as the following symmetrical and semipositive
definite d × d matrix [11]:

S x x w x w x( ; ) ( ; ) ( ( ) ( ))I I
ts s= * ¼G  ,               (4)

where the convolution “*” of the matrix (w(x) ¼ wt(x)) with
the Gaussian is element-wise. The parameter sI is the inte-
gration scale and, if w�(x; sI) is the eigenvector correspond-
ing to the largest eigenvalue of S(x; sI), then the dominant
gradient vector in a neighborhood of W centered at x and of
size proportional to sI is:

~ ( ; ) sign ( ( ; ) ( )) ( ; )I
t

I Iw x w x w x w xs s s= � ¼ �  .      (5)

The structure tensor analysis assumes that every point
has a preferred orientation, which can be checked by a
confidence measure: for each orientation we associate a
value C ³ [0, 1], which can be computed from the eigenval-
ues of S(x; sI), say l1(x; sI) � ¡ � ld(x; sI) � 0. Similarity of
the eigenvalues implies isotropy and, as a result, C should
be close to zero. A suitable function for an experimentally
chosen c is:

C( ; )I

( ( ; ) ( ; )) /I I
x

x x
s

s s
= -

- -�� ��= = +1 1 1
2 2 22

e i
d

j i
d

i j cS S l l
.  (6)

Now, in d dimensions, let & be a (d - 1)-dimensional sim-
ple closed boundary of a neighborhood centered at a point x,
let n be the unitary normal vector of & and d, the (d - 1)-
dimensional volume element of & (e.g., Fig 1a depicts the
2D continuous case). Accordingly, we define the multilocal
creaseness measure ~k d  at x as:

~ ~ ( ; ) ( )t
Ik d d= -

³
¼

y
w y n y

&
s ,  .               (7)

The multilocality nature of ~k d  is due to the boundary &
and the parameter sI. The effect of increasing & or sI is de-
scribed in [15].

The discretization of ~k d  can be stated as follows. Let %�=
{x1, ¡, xr} be the set of points that form the discrete bound-
ary & of a neighborhood centered at x, and let 8� =
{ ~ , , ~ }w w1 K r  be a set of vectors such that "k ³ ,r :
~ ~( ; )Iw w xk k= s , for a given s I . Then, according to (7) and
after a useful rescaling, ~k d  can be discretized as:

~ ~ tk d
k

r

k k

d
r= - ¼

=
Ê

1

w n  ,                         (8)

1�= {n1, ¡, nr} being the set of unit normal vectors to & at
each boundary site, that is, "k ³�,r : nk = n(xk). The simplest
case is in 2D (d = 2) with %�composed of the four nearest
neighbors of each pixel (r = 4). That is, for the pixel pi,j of
coordinates [i, j] we have %�= {pi,j–1, pi+1,j, pi,j+1, pi–1,j} and 1
= {nN, nE, nS, nW}, according to the scheme of Fig. 1b. There-
fore, at pi,j we have:

~ [ , ] (~ [ , ] ~ [ , ] ~ [ , ]

~ [ , ])

k 2
1 1 2

2

1
2 1 1 1

1

i j w i j w i j w i j

w i j

= - + - - + +

- -
 ,   (9)

where ~ (~ , ~ )tw = w w1 2 . From now on, we denote ~k 2 accord-
ing to (9), as ~ke  where the symbol “e” recalls the shape of
&. The 3D equivalent (d = 3) uses the six nearest neighbors
of each voxel (r = 6) to form %. That is, for the voxel pi,j,k and
according to the scheme of Fig. 1c, we have %� = {pi,j-1,k,
pi+1,j,k, pi,j+1,k, pi-1,j,k, pi,j,k-1, pi,j,k+1} and 1�= {nN, nE, nS, nW, nF,
nB}. Then at pi,j,k:

Fig. 1. (a) Geometry involved in the definition of ~k d  at x in the continuous domain, for d = 2; (b) boundary & on a 2D regular grid according to the

four nearest neighbors; (c) The same in 3D for the six nearest neighbors.
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~ [ , , ] ~ [ , , ] ~ [ , , ]

~ [ , , ] ~ [ , , ]
~ [ , , ] ~ [ , , ]

(

),

k 3
1 1

2 2

3 3

1
3 1 1

1 1

1 1

i j k w i j k w i j k

w i j k w i j k

w i j k w i j k

= - + - -

+ + - -

+ + - -

-

      (10)

where ~ ( ~ , ~ , ~ )tw = w w w1 2 3 . From now on, we denote ~k 3 ac-

cording to (10) as ~Mke .

It is easy to show [15] that in d dimensions |~ |k d d� .
Moreover, |~ |k d  approaches the codimension of the ridges
and valleys to and from which the vector field ~w  converge
and diverge. This gives us a reasonable way to threshold ~k d

in order to extract creases too. In addition, since C�³ [0, 1]
we can use the measure C~k d  to get rid of creaseness at iso-
tropic or background regions, and still keep the same
bounds of ~k d  up.

4 CRITERIA FOR EVALUATING RIDGE/VALLEY
ALGORITHMS

In order to assess the validity of the different ridge/valley
characterizations, we have devised a set of desirable prop-
erties referring to the clean (P1–P4) and robust (P5, P6) ex-
traction of salient ridges/valleys:

P1. No over-detection. Irrelevant ridges/valleys should not
be detected.

P2. No under-detection. Salient ridges/valleys must always
be detected.

P3. Continuity. Continuous ridges/valleys must be obtained
from a continuous object.

P4. Good contrast. A creaseness measure should have a
much higher value on a crease than around it and should
maintain a similar value along the crease.

P5. Structural stability. Small perturbations of the image
should not greatly alter the shape or the location of the
ridges/valleys.

P6. Good localization. Ridges/valleys should run as closely
as possible through the center of anisotropic objects.

It is difficult to quantify these properties because their
practical relevance depends on the application. Therefore,
we will comment on them in the context of the following
types of applications, to which most specific applications
using ridges/valleys belong:

T1 Extraction of medial axes. These applications are those in
which we need to extract the central axes of an aniso-
tropic grey-level object. In this context we present a spe-
cific application on which we are currently working: the
delineation of the main stream of the right coronary ar-
tery (RCA) from 2D coronary arteriographies (Fig. 2a),
with the purpose of collecting spatio-temporal under-
standing of the cardiovascular dynamics.

T2 Medialness approximation. This consists of determining
how closely a point is from a central axis of an aniso-
tropic grey-level object. We are working on the registra-
tion of CT and MR brain volumes [14] from the same

patient, which is useful because CT depicts bone accu-
rately while MR depicts better the soft tissues (Fig. 3a
and 3d). Our method is similar to van den Elsen’s [6]: the
registration is achieved by aligning a ridgeness measure,
computed from the CT, with a valleyness measure com-
puted from the MR, both tuned to be high only on the
center of the skull (medialness). Since the skull is unde-
formable, only rigid transformations need to be assessed.
The matching quality of a transform is given by the cor-
relation between ridgeness and valleyness.

T3 Segmentation. In many applications, homogeneous ob-
jects are separated by narrow ridges/valleys, therefore,
their delineation segments the objects. An example is our
work on the segmentation of marble grains [17]. Micro-
scope images of thin marble sections (Fig. 4a) are used to
determine the geographical origin of the marble. The
classification is based on the shape, size and spatial dis-
tribution of the marble grains, which can be segmented
by delineating the narrow valleys that separate them.

T4 Extraction of drainage patterns. The delineation of the true
paths of the Earth’s surface along which water gathers to
run downhill, e.g., from DEMs (Fig. 5a), is of high inter-
est in civil engineering as well as in water management.

The specific applications from the types T1, T3, and T4
require ridge/valley delineation in 2D while the applications
of type T2 require a 3D ridgeness/valleyness measure.

5 EVALUATION

For the applications in 2D we will take into account the
height and vertex conditions, the Lvv, k, and C~k e  opera-
tors, watercourses, and drainage patterns. For the applica-
tion in 3D we will compare Lpp, Lqq, and C~

Mk e . For each
application we will comment on the main problems of these
ridge/valley characterizations with regards to the proper-
ties described in the previous section.

5.1 Implementation Details and Parameter Selection
Derivatives for creases and creaseness were obtained as
finite centered differences of a smoothed version of the
original image. In fact, we tested other approaches (Gaus-
sian derivatives and derivatives of fitting polynomials) and
found very similar final results. Smoothing was performed
by convolving the image with a Gaussian kernel whose
standard deviation, namely the differentiation scale s D , was
manually tuned to yield the best output. For the image in
Fig. 2a we used s D  = 4 pixels, as well as for the CT and MR
volumes of Fig. 3a and 3d. For Figs. 4a and 5a we used s D
= 2 pixels, except in the case of the vertex condition of Fig.
4d which needed s D  = 4 pixels to give a reasonable output.

The height and vertex conditions were checked in 2D by
looking for sign changes in their corresponding zero-
crossing functions in a raster manner. Both pixels involved
in a change of sign were labeled as satisfying the condition.
Afterwards, a thinning algorithm was used to obtain 1-pixel-
wide lines.
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Creases can be also obtained by thresholding a crease-
ness measure. With k and Lvv we tuned the threshold value
to obtain the best output in each application. With C~k e  we
used the same value in all the applications, due to its well
defined dynamic range. However, each application re-
quired its own constant c to compute C since it depends on
the contrast of the objects we are looking for. Despite of
this, a fine tuning was not required. Finally, we also thinned
the thresholded image to obtain 1-pixel-wide lines.

To extract watercourses, we implemented the algorithm
proposed by Beucher and Meyer [1], briefly described in
Section 2.2. As the authors suggest, we apply an erosion-
reconstruction morphological filtering to remove spurious
local maxima, prior to watercourse extraction. The amount
of filtering was manually tuned for each application, in or-
der to achieve the best result. In Fig. 2g we use a black line
to represent the watercourse obtained for a severe filtering,
and a lighter grey value to represent the watercourses ob-
tained with a slight filtering. In Fig. 5g we did the opposite
for the sake of visualization.

The drainage pattern algorithm we have chosen is from
[27], briefly described in Section 2.3. In Fig. 2h the drainage
pattern is shown as lines of different grey values depending
on the amount of accumulated water, the darker the greater
the accumulation is, and therefore the higher the line rele-
vance. For the sake of visualization, in Figs. 4h and 5h the
criterion is the opposite.

5.2 Results Evaluation
Delineation of the RCA centerline from coronary arte-
riographies. The ridge/valley detection based on vertex
condition (Fig. 2d) is unsatisfactory, due to the high num-
ber of irrelevant branches joining the main centerline (P1
fails). Some of these branches are artifacts due to the high
order of the derivatives involved in the vertex condition.
Thresholding of k  or Lvv (Fig. 2b and 2c) does not suffer
from this problem, but the obtained centerline has many
discontinuities (P3 fails). Thresholding C~k e  produces a
quite continuous and clean centerline (Fig. 2e). The output
of the height condition (Fig. 2f) is similar to the one of C~k e

since, in this case, the value of the extrema of the second
order directional derivative contributed to discard points
where this value is too low, otherwise background lines
would appear as with k. The obtained RCA centerline is
continuous, although it contains some spurious branches.

In Fig. 2g we can see the watercourses. With a slight fil-
tering, we obtained a myriad of regions so that some of
their borders cover the RCA centerline (P1 fails). With a
stronger filtering only the black line along the RCA in Fig. 2g
is detected, which fails to delineate the final part of the
RCA (P6 fails). Furthermore, the detection of this line was
found to be very unstable along a whole sequence of arte-
riographies (P2 and P5 fail).

The drainage pattern algorithm is able to extract the dark
line of Fig. 2h, which runs irregularly near the center of the
RCA, and suffers from under-detection in the distal of the
RCA (P2 and P6 fail). This is mainly due to the fact that re-
moving the local minima and planar areas implicitly modi-
fies the shape of the image. On the other hand, without this
preprocessing, the algorithm produces a poor accumula-

tion, making it difficult to obtain a main stream. We think
that by designing an intelligent method to overflow minima
and planar areas, in such a way that the runoff could be
simulated after a Gaussian smoothing of the original image
instead of the prefiltering based on removing the local
minima and planar areas, the drainage pattern would fol-
low more precisely the center of the RCA. However, it
would yet be difficult to obtain a continuous stream with
high accumulation along the whole RCA center.

Due to the continuity and cleanness of the RCA center-
line using C~k e , we have chosen it for this application. To
isolate the RCA centerline, short lines are removed, since
they belong to the background. Notice that this criterion

Fig. 2. (a) Coronary arteriography imaging the right coronary artery.
Valleys based on (b) negative large values of k; (c) positive large val-

ues of Lvv; (d) vertex condition for valleys; (e) negative large values of

C~k e
 (sI = 2.0 pixels and c = 0.01); (f) height condition for valleys, (g)

watercourses (grey lines: after a slight filtering, black line: after a strong
filtering), (h) drainage pattern.
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would be useless with k  or Lvv (Fig. 2b and 2c) due to their
discontinuity problems.

Registration of CT and MR brain volumes. To obtain a good
matching between the ridgeness from the CT and the val-
leyness from the MR, we want these creaseness measures to
have a high, continuous and homogeneous response along
the center of the skull, and to be low elsewhere. Fig. 3

shows the results based on Lpp, Lqq, and C~
Mk e . Notice how

both Lpp applied to the CT and Lqq to the MR present many
discontinuities along the skull (P3 fails), and they do not

have a homogeneous contrast (P4 fails). Furthermore, Lqq

gives a high response in the brain, due to the sulci and the
separation between the two brain hemispheres (P1 fails).
The response of C~

Mk e  is high, continuous and homogene-
ous along the skull center of both the CT and MR image.
Furthermore, only the separation between the brain hemi-
spheres produces extra valleyness in the MR volume. Ac-
cordingly, for this application we chose the C~

Mk e  operator.

Segmentation of marble grains. The drainage patterns (Fig.
4h) do not follow the grain boundaries (P6 fails) as drainage
lines of equal relevance (accumulation). The observation
about the prefiltering done in the context of the RCA cen-
terline delineation applies in this case too.

The k, Lvv, and C~k e operators, and the height and vertex
conditions give acceptable results (Fig. 4b, 4c, 4d, 4e, and 4f),
C~k e  being the best among them. However, none of these
operators ensured closed regions, unlike the case of water-
courses (Fig. 4g). The response of C~k e  could be post-
processed to give such closed regions too. However, despite
then having fewer regions than with watercourses (compare
Fig. 4e and 4g), we still could not ensure that each one corre-
sponds to a different grain. Therefore, in any case, we had to
build an application-dependent region grouping procedure.
Thus, the watershed algorithm seems to be the most suitable.

Drainage pattern delineation from DEMs. Fig. 5 shows that
the best output for DEMs is given by the algorithm that
simulates the overland flow of water. Since the streamlines
can be ordered according to the degree of accumulation, by
successive thresholds we can obtain streamlines of different
relevance.

The operator C~k e  is able to detect the main lines. The
k and Lvv operators present discontinuities (P3 fails). The
height and vertex conditions also delineate the main lines
but the response is noisy. The vertex condition yields more
detail than the other crease operators.

The drainage patterns do not divide the landscape into
closed regions, therefore, using watercourses, arbitrary
lines appear and disappear (P1 and P2 fail).

6 DISCUSSION

In this paper, we have classified, reviewed and compared
most relevant ridge/valley characterizations: the height
condition, vertex condition, Lvv, k, Lpp , and Lqq from the
local class, drainage patterns from the multilocal class and
watercourses from the global class. The comparison has
been performed by analyzing general desirable properties
when applied to real 2D and 3D image analysis problems.

They were chosen to be representative of the types of prob-
lems in which ridge/valley structures are commonly em-
ployed. We have included the multilocal creaseness meas-
ure C~k d , proposed by us, in the comparison.

In general, we think that the most suitable characteriza-
tions to approximate medial structures are crease operators.
However, separatrices (e.g., watersheds) can be very useful
in the event of the medial structure being a closed feature
(e.g., a closed curve in 2D) and being able to devise a suitable
and stable filtering process or set of markers. In comparison,
drainage patterns are not appropriate for approximating
such structures from grey-level images. On the other hand,
we realize that none of these approaches takes into account
the boundaries of the objects. Therefore, when we need to
extract their medial axes very accurately, we can use the

Fig. 3. From top to bottom row: (a) Transversal, coronal and sagittal
slices of a CT volume with cubic voxels; (b) Lpp (negative values) of the

CT; (c) C~
Mk e

 (positive values) of the CT (sI = 4 pixels and c = 1,000);

(d) Transversal, coronal and sagittal slices of a MR volume with voxels

of the same size as the CT; (e) Lqq (positive values) of the MR; (f)C~
Mk e

(negative values) of the MR (sI =  4 pixels and c =1,000).
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ridges/valleys as ‘”initial approach” and after refine their
position as is done in [28] for 2D images, or take a more so-
phisticated and expensive multiscale approach as in [23].

The watershed transform is, in general, the best ridge/
valley method for segmentation purposes. Usually, a suit-
able filtering scheme to remove local minima or a reliable
set of markers are mandatory. An application-dependent
region merging postprocessing is also a good solution.
Crease operators perform well in segmentation problems,

but do not guarantee closed regions. However, they tend to
produce less oversegmentation. Again, in comparison,
drainage patterns do not seem too useful in extracting ob-
ject boundaries.

To compute the true drainage pattern, the best algo-
rithms are clearly those based on simulating the overland
flow of water. Here we have used only one of the methods
existing on the literature of image analysis and Earth sci-
ences. Their comparison under different characteristics of

Fig. 4. (a) Petrographical microscope image of a thin marble section
showing the granular structure. Valleys based on (b) negative large

values of k; (c) positive large values of Lvv; (d) vertex condition for

valleys; (e) negative large values of C~k e
 (sI = 1.0 pixels and c = 1.0);

(f) height condition for valleys; (g) watercourses; (h) drainage pattern.

Fig. 5. (a) Digital elevation model. Valleys based on (b) negative large

values of K, (c) positive large values of Lvv; (d) vertex condition for

valleys; (e) negative large values of C~k e
 (sI = 1.0 pixels and c = 1.0);

(f) height condition for valleys; (g) watercourses (grey lines: after a
slight filtering, white line: after a strong filtering); (h) drainage pattern.
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the Earth relief is out of the scope of this paper. In this di-
rection, the work in [4] is an example. Separatrices are use-
less for that purpose, since drainage patterns do not divide
the landscape into closed regions. Creases can eventually be
used to detect relevant streams.

The height condition has proved to be more useful than
the vertex condition. On the other hand, the thresholding of
our creaseness measure C~k d  gives better or similar results,
in general, than the height condition. Furthermore, C~k d  has
proved to give a continuous and homogeneous creaseness,

unlike k and Lvv in 2D or Lpp and Lqq in 3D.
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