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Abstract

Creases are a type of ridge/valley structures that
can be characterized by local conditions. Therefore,
creaseness refers to local ridgeness and valleyness.
The curvature � of the level curves and the mean cur-
vature �M of the level surfaces are good measures of
creaseness for 2{d and 3{d images, respectively. How-
ever, the way they are computed gives rise to discon-
tinuities, reducing their usefulness in many applica-
tions. We propose a new creaseness measure, based
on these curvatures, that avoids the discontinuities.
We demonstrate its usefulness in the registration of
CT and MR brain volumes, from the same patient,
by searching the maximum in the correlation of their
creaseness responses (ridgeness from the CT and val-
leyness from the MR). Due to the high dimensionality
of the space of transforms, the search is performed by
a hierarchical approach combined with an optimization
method at each level of the hierarchy.

1 Introduction

Ridge/valley structures of a grey{level image tend
to be at the center of anisotropic shapes. Therefore,
they have been used in a number of applications as ob-
ject descriptors. On the other hand, the mathematical
characterization of what is a ridge/valley is far from
being a simple issue [5]. Several di�erent mathemat-
ical de�nitions have been proposed which we classify
in three groups according to their scope:

� Creases : local descriptors that, basically, look for
the center of anisotropic shapes.

� Separatrices : global descriptors that result of
linking the critical points of the image by means
of slopelines, dividing it in hill/basin districts.
Slopelines are curves which run orthogonal to the
level curves, this is, they integrate the image gra-
dient vector �eld.
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Figure 1: A type of ridge/valley{like curves is de�ned
as the loci of extrema of � along the v direction.

� Drainage patterns : channels of water generated
by the surface runo� induced in a landscape when
it rains. They have a regional character.

Yet, in the literature we can �nd several de�nitions
within the crease class [1]. Among them, the one based
on level set extrinsic curvature is particularly useful
because of its invariance properties. Given a function
L : IRd ! IR, the level set for a constant g consists of
the points fxjL(x) = gg. The variation of g produces
all the level sets of L. The simplest situation occurs
at d = 2, when L can be thought as a topographic
relief and the level sets are its level curves. Negative
minima of the level curve curvature �, level by level,
form valley{like curves and positive maxima ridge{like
curves (Fig. 1) [3]. If we denote as v the tangent vec-
tor to the level curves, these creases are characterized
by the following local extremality criterion:

e = r� � v = 0 (1)

where re � v < 0, � > 0 means ridge and re � v > 0,
� < 0 valley.

In the 3{d case the straightforward extension of �
for level surfaces is two times the Mean curvature �M
of these surfaces. Since �M is a non{directional quan-
tity, other authors [7, 12] have applied the extremality



criterion to the principal curvature of the level surfaces
which is largest in magnitude.

The direct computation of extremality criteria as
(1) involves up to fourth order image derivatives com-
bined into a complex expression (check for example
[3] p. 637 for the 2{d case and [7] p. 176 for 3{d).
Nevertheless, the extrema of curvature of elongated
structures in 2{d and plate{like structures in 3{d are
so high that one can circumvent the computational
drawback by just computing � or �M as creaseness
measures and then performing a thresholding. Or just
take the creaseness measure itself as a feature, like in
the image registration application we present in this
paper. This is by no means an infrequent situation
but it is precisely for these anisotropic structures that
ridge and valley lines are employed.

However, in 2{d for example, the way � is usually
computed gives raise to discontinuities at places where
we would not expect any reduction of creaseness be-
cause they are at the center of elongated objects and
creaseness is a measure of medialness for them. The
same problem arises when computing �M in 3{d.

In Sect. 2 we review the traditional way of comput-
ing � and �M, analyze the above mentioned problem
and propose a �rst alternative to avoid it. Section 3 we
go further and present a second improvement derived
in a natural way from the �rst one and based on the
so{called structure tensor. The creaseness measure de-
rived in Sect. 3 is used in Sect. 4 to register CT and
MR brain volumes. The results are compared with
the mutual information algorithm which is considered
one of the best for registering images from di�erent
sensors. Conclusions are summarized in Sect. 5.

2 Level set extrinsic curvature based

on the image gradient vector �eld
The level set extrinsic curvature in Cartesian coor-

dinates for the two and three{dimensional cases are:
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where L� denotes the �rst order partial derivative of L
with respect to �, L�� the second order partial deriva-
tive with respect to � and �. To obtain derivatives of
a discrete image L in a well{posed manner we have ap-
proximate them by �nite di�erences of the Gaussian{
smoothed image:

L�(x;�D) =
@

@�
(L(x) �G(x;�D)) � ��L(x;�D) (4)
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Figure 2: From top to bottom and left to right: (a)
relief with regions having valley{like and ridge{like
shape, (b) its level curves, (c) � (notice the gaps),
(d) ��.

where �� stands for a partial �nite di�erence along
the discrete � axis and �D is the standard deviation of
the Gaussian kernel. We use centered �nite di�erences
because of their invariance under rigid movements in
the image plane and their high approximation order.

In the 2|d case, if we travel along the center of
anisotropic structures, we go up and down on the
relief, passing through isolated maxima, saddles and
minima. We have found that computation of � ac-
cording to Eq. (2) produces discontinuities in the
creaseness measure around this type of critical points
(e.g. Fig. 2), as well as on the center of elongated
grey{level objects having a short dynamic range along
this center. We have checked that they are produced
independently of the scheme we use to approximate
derivatives. Moreover, the problem is not due to a low
gradient magnitude, since they appear even when the
image gradient magnitude is far away from the zero of
the machine, this is, Eq. (2) is well{de�ned. The 3{d
measure �M has analogous problems if it is computed
according to Eq. (3). Other 3{d creaseness measures
like Lpp (ridgeness) and Lqq (valleyness) [2, 6] { the
second order directional derivatives along the princi-
pal directions (p and q) of the level surfaces { also
present discontinuities (see [2] p. 386 and [6] p. 83).

To avoid this problem we present an alternative way
of computing creaseness based on the level set extrin-



sic curvature. In vector calculus there is a well{known
operator called divergence [10] which measures the de-
gree of parallelism of a vector �eld and, therefore, of
its integral lines. The divergence of a d dimensional
vector �eld u : IRd ! IRd;u(x) = (u1(x); :::; ud(x))t is
de�ned as:

div(u) =
dX
i=1

@ui

@xi
: (5)

Now, if we denote by 0d the d dimensional zero
vector, then we can de�ne �w, the normalized gradient
vector �eld of L : IRd ! IR, as:

�w =

�
w=kwk if kwk > 0
0d if kwk = 0

(6)

where the xi are the coordinate axes and w =
(Lx1 ; :::; Lxd)

t is the image gradient vector.

It can be shown that the d dimensional level set
curvature can be de�ned as:

�d = �div( �w) (7)

where �d > 0 means ridge and �d < 0 valley.

For d = 2, Eq. (2) is equivalent to Eq. (7) in
the continuous domain. However, and this is the key
point, the same derivatives approximation of Eq. (2)
and Eq. (7) gives di�erent results, namely, the dis-
cretization of Eq. (7) avoids the discontinuities that
Eq. (2) produces on creases. The same applies to Eq.
(3) and Eq. (7), since �M = �3=2. Thus, from now
on, we denote by � and �� the discrete versions of the
level set extrinsic curvature according to Eq. (2) and
Eq. (7), respectively. Symbols �M and ��M will be used
analogously, and for higher values of d, �d and ��d. Fig-
ure 2 compares the behavior of � and ��. Notice how
discontinuities disappear now. Furthermore, it can be
shown that if we approximate the derivatives of a d di-
mensional image with centered �nite di�erences then
j��dj � d, reaching �d at minima and d at maxima.

3 Level set extrinsic curvature based

on the image structure tensor �eld

Once we have established �� and ��M as good crease-
ness measures, we can go further and improve them
by modifying the gradient vector �eld of the image
before applying the divergence operator. Given the
usual con�gurations of the gradient around a crease
line (Fig. 3a), we want to �lter the �eld in order to
increase the degree of attraction/repulsion (Fig. 3b)
and consequently its creaseness. At the same time,
regions where there is neither a clear attraction nor

(a)
Repulsion RepulsionAttraction Attraction

(b)

Figure 3: Attraction and repulsion of vectors in (b) is
higher than in (a).

repulsion must not change. This �ltering can be car-
ried out through the so{called structure tensor, which
is a tool for analyzing oriented textures [4, 8].

Let's assume that at any given point x there is a
single dominant orientation at most, taking into ac-
count a weighted neighborhood of size �I around it,
W(x;�I). The structure tensor is represented by the
symmetric and semi-positive de�nite d� d matrix:

M(x;�I;�D) =W(x;�I) � (w(x;�D)
tw(x;�D)) (8)

where the convolution is element{wise. A suitable
choice for the window is a d dimensional Gaussian,
i.e. W(x;�I) = G(x;�I). The dominant gradient ori-
entation, namely w0, is given by the eigenvector which
corresponds to the highest eigenvalue ofM. However,
in the structure tensor analysis, opposite directions
are equally treated. Thus, to properly recover the di-
rection in 2{d we put w0 in the same quadrant that
w, and in 3{d in the same octant. Then, we obtain
the new vector �eld:

~w = sign(w0tw)w0 (9)

where the function sign(x) returns +1 if x > 0, �1 if
x < 0 and 0 if x = 0. In this way, attraction/repulsion
of vectors is reinforced and the creaseness measure

~�d = �div( ~w) (10)

is enhanced along creases with respect to ��d. Again,
~�d > 0 means ridge and ~�d < 0 valley.

Table 1 shows the elapsed CPU times of the di�er-
ent operators for di�erent image dimensions.

On the other hand, we have assumed that every
point has a preferred orientation (the perpendicular
to w0). To check this assumption we associate to each
orientation a con�dence measure, normalized in the
real interval [0; 1] and such that it can be computed
from the eigenvalues of the structure tensor. Similar-
ity of eigenvalues implies isotropy, therefore C should
be close to zero. For �i; i = 1; :::; d being the eigen-
values of the structures tensor, a suitable con�dence
measure is:

C(x) = 1� e
�

�P
d

i=1

P
d

j=i+1
(�i(x)��j(x))

2
�2
=2c2

(11)



Table 1: CPU time in a 200 MHz Pentium Pro PC
with 64MB of RAM, under Linux OS.

Image Gaussian
dimensions smoothing � �� C~�

(�D = 4:0)

2562 0.3 s 0.058 s 0.072 s 1.2 s
5122 1.3 s 0.24 s 0.28 s 5.3 s

�M ��M C~�M
1282 � 84 50 s 1.8 s 2.1 s 50 s
2502 � 180 360 s 23 s 23.3 s 720 s

Figure 4: CT ridgeness and MR valleyness according
to C~�M, for �D = �I = 4:0 voxels and c = 1000.

where threshold c is experimentally chosen. Then, C~�d
has a lower response that ~�d at isotropic regions.

4 Automatic registration of CT and

MR brain volumes
This application motivated our research on crease-

ness operators. We have focused on CT{MR registra-
tion because these modalities are widely available and
provide partially complementary information (CT de-
picts accurately bones, while MR is suitable for soft
tissues) which is interesting to fuse. Multisensor reg-
istration methods must take into account that images
cannot be directly compared because the information
they exhibit, though coming from a common origin,
is not directly commensurable. First methods used
markers visible in both modalities to provide good ref-
erence points, but they were manual and had the in-
convenients of lacking retrospectiveness and not being
patient friendly.

We have developed an automatic registration
method similar to van den Elsen's [2]. It is based
on the fact that the skull is visible both in CT and
MR brain images. The signal produced by the bone

Figure 5: Contour of the skull from the registered CT
overlapped to the MR volume. Here the contrast of
the MR has been reduced to enhance the visibility of
the contour.

is strong in CT, but weak in MR, in such a way that
the skull forms a ridge surface in the CT image and
a valley surface in the MR. Moreover, since the skull
is an undeformable structure only rigid transforma-
tions need to be considered. Thus, only 6 parameters
must be considered : �x, �y, �z for rotations around
the correspondent axis and tx, ty, tz for translations.
Scaling factors are known from the acquisition system
setting. Our work presents several improvements com-
pared to the original van den Elsen's. Our creaseness
operators ��M and C~�M yield a higher quality output.
Currently we only use C~�M. Also, the transform pa-
rameters are optimized using the downhill simplex al-
gorithm instead of exhaustive search. Finally, robust-
ness has been assessed with a wider range and number
of random transformations.

The �rst step of our registration procedure is to
scale the CT and MR images to have voxels of the
same size. Secondly we extract a ridgeness measure
from the CT and a valleyness measure from the MR.
The C~�M operator is ideal for this purpose because it
gives a very high and homogeneous response in the
voxels depicting the center of the skull and avoids
the discontinuities produced by other existing oper-
ators. This permits a quick convergence when align-
ing the images. The ridgeness from the CT image
(C~�M > 0) and the valleyness from the MR (C~�M < 0)
are extracted by using the same values of �D; �I and c
(Fig. 4). The third step consists of iteratively trans-



Table 2: Parameter di�erences between T and T 0. An-
gle di�erences are in degrees, translation and mean
distance in millimeters. Results of our algorithm.

�tx �ty �tz ��x ��y ��z Mean dist.

0.00 0.00 0.00 0.00 0.00 0.00 0.00 +
0.09 0.01 0.07 0.03 0.06 0.15 0.25 {
0.03 0.02 0.19 0.11 0.02 0.05 0.22 +
0.05 0.04 0.15 0.07 0.03 0.05 0.17 +
0.10 0.02 0.25 0.13 0.02 0.04 0.29 {
0.11 0.02 0.29 0.10 0.04 0.08 0.32 {
1.77 * 0.50 0.51 0.06 0.13 0.93 2.36 { *
0.05 0.17 0.20 0.13 0.00 0.01 0.30 +
2.10 * 0.50 0.37 0.53 0.39 1.10 2.87 { *
0.01 0.13 0.15 0.08 0.07 0.00 0.24 +
0.10 0.27 0.18 0.12 0.00 0.01 0.40 +
0.18 0.06 0.21 0.10 0.04 0.01 0.34 {
0.16 0.11 0.28 0.06 0.12 0.00 0.39 {
0.07 0.06 0.19 0.10 0.06 0.01 0.23 +
0.11 0.15 0.19 0.07 0.11 0.09 0.33 +
0.09 0.05 0.26 0.03 0.10 0.03 0.30 {
0.32 0.45 0.04 0.06 0.05 0.11 0.63 +
0.13 0.14 0.15 0.12 0.02 0.08 0.31 {

form one of the images until it is properly aligned
with the other. A proper function to measure the
goodness of the alignment is the correlation CT =P

x2f f(x) � g(T (x)), where T represents a transfor-
mation whose parameters we want to test and f and
g are the ridgeness and valleyness measure from the
CT and MR images, respectively.

The function CT together with the 6 parameters
of the transformation de�nes a search space which is
di�cult to optimize because: a) the function is not
monotonic, i.e. has many local maxima, b) the simi-
larity measure is very expensive since it involves the
transformation of a large image, and c) transforma-
tion parameters can not be decoupled. In order to
search in lower dimensional spaces we can search the
parameter space at multiple resolutions, as in [2]. The
idea consists of searching for the best transformation
at each level around the results found in the previous
one. At the top of the pyramid, the search is done
exhaustively to take advantage of its reduced dimen-
sions. This search provides us with a set of candidate
transforms. At the next level of the pyramid the algo-
rithm starts a downhill simplex search [9] from each
of the previous candidate transforms. This step gen-
erates new candidates that are supposed to be bet-
ter than the previous ones. They are the seed for the
downhill simplex in the next level of the pyramid. The
process is repeated until the highest level of resolution
is reached (bottom of the pyramid).

We devised an experiment to assess the robust-

Table 3: Parameter di�erences between T and T 0. An-
gle di�erences are in degrees, translation and mean
distance in millimeters. Results of the MI algorithm.

�tx �ty �tz ��x ��y ��z Mean dist.

0.51 0.05 0.51 0.05 0.15 0.00 0.86 {
0.01 0.12 0.09 0.00 0.01 0.01 0.16 +
0.12 0.18 0.04 0.04 0.06 0.02 0.26 {
0.25 0.33 0.14 0.05 0.01 0.00 0.43 {
0.20 0.01 0.01 0.04 0.04 0.06 0.28 +
0.02 0.19 0.08 0.08 0.06 0.06 0.28 +
0.07 0.23 0.00 0.01 0.04 0.04 0.27 +
0.04 0.39 0.16 0.15 0.10 0.19 0.56 {
0.01 0.06 0.08 0.08 0.02 0.29 0.46 +
0.18 0.32 0.04 0.06 0.17 0.19 0.50 {
0.17 0.40 0.05 0.21 0.21 0.36 0.72 {
0.07 0.07 0.01 0.04 0.02 0.03 0.14 +
0.09 0.30 0.03 0.04 0.03 0.08 0.36 +
0.02 0.21 0.02 0.04 0.01 0.05 0.25 {
0.20 0.03 0.15 0.05 0.16 0.24 0.43 {
0.03 0.03 0.03 0.06 0.01 0.03 0.09 +
0.40 0.25 0.08 0.02 0.04 0.29 0.68 {
0.02 0.06 0.02 0.01 0.01 0.02 0.08 +

ness of the whole registration algorithm. We worked
with a CT and MR scaled and unregistered pair of
250 � 250 � 180 voxels. First we aligned both im-
ages to posteriorly unalign them through a transform
T of known random parameters. We could recover
the unknown alignment by a transform minimizing the
mean square correspondence error of several stereotac-
tic frame landmarks manually pointed out by experts
[2]. However, the correspondence error of our trans-
form is expected to have a similar magnitude to the
one of the stereotactic frame approach. Thus, in or-
der to objectively asses the accuracy of our method
we registered the CT and MR images by running our
algorithm. Let's denote as CT' and MR' these new
registered images. Next, the CT' image was trans-
formed using known parameters (transform T ) and
the registration algorithm was run in such a way that
the MR' image was the one moved to perform the
registration. Then, the algorithm recovers other pa-
rameters (transform T 0) that should be as closed as
possible to the former ones. We ran this experiment
using a number of di�erent random transformations
in order to ensure statistical signi�cance. Transfor-
mation parameters took values randomly distributed
within wide intervals, namely, �30 mm and �30� for
each translation axis and rotation angles, respectively.

To asses the goodness of T 0 we measured the dis-
tance kT (x)� T 0(x)k for each voxel x of the CT' im-
age belonging to a region including the skull. Then
we calculated the mean distance from all these vox-
els. This is quite reasonable because the skull is the
structure of reference and far away from the center of



rotation. Table 2 shows the results of our algorithm for
this experiment and Table 3 shows the results of the
voxel{based method called mutual information (MI)
[11], which currently is considered one of the best to
register images from di�erent modalities. In Table 2
the symbol '+' means that our algorithm performed
better than MI and symbol '{' means worse. In Ta-
ble 3, '+' means that MI performed better and '{' the
opposite. The entries marked with '*' in Table 2 re-
fer to the case where we did not obtained sub{pixel
accuracy, which in both cases was due to a high error
in recovering the translation along the x axis. We are
currently addressing our e�orts to discover the origin
of this problem. Figure 5 displays a fusion result.

5 Conclusion
Level set extrinsic curvature is a creaseness measure

that acts as medialness feature for grey{level objects.
In this paper we have �rst pointed out the problem of
discontinuities when computing it with the classical
scheme. We have proposed an alternative that over-
comes it. We have also proposed a modi�ed version
adapting the structure tensor �ltering to improve the
results. Finally, the operator has been used to regis-
ter CT and MR brain volumes. The registration algo-
rithm requires a hierarchic approach to deal with large
volume images, as well as an optimization method
(downhill simplex) to search for the best transforma-
tion. According to our experiments, we conclude that
the resulting overall accuracy is in most cases sub{
pixel and comparable to that achieved by the mutual
information method. However, we still have to run
more experiments with MR images of di�erent con-
trast and CT images of fewer slices. Finally, since the
creaseness measure C~�M looks like a thresholded im-
age in the CT and the MR case, we want to transform
it into a binary image and try also the surface{based
registration approach.
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