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Abstract— Detection of lane markings based on a camera
sensor can be a low cost solution to lane departure warning
and lateral control. However, reliable detection is difficult due
to cast shadows, vehicles occluding the marks, wear, vehicle
motion, etc. The contribution of this paper is twofold. Firstly, we
propose to explore another low–level image descriptor, namely,
the ridgeness, instead of the gradient magnitude with the aim of
getting a more reliable lane marking detection under adverse
circumstances. Besides, the proposed measure comes with an
associated orientation which is less noisy than the gradient
one. Secondly, we have adapted RANSAC, a generic robust
estimation method, to fit a parametric model to the image lane
lines using both ridgeness and orientation as input data. In
short, in this paper a better feature type and a robust fitting
method are proposed, which contribute to improve the lane
lines detection reliability, and still achieving real–time.

I. INTRODUCTION

AN important challenge of automotive industry is to
develop low cost advanced driver assistance systems

(ADAS) able to increase traffic safety. Since vision is the
most used human sense for driving, some ADAS features rely
on camera based systems [1]. For instance, lane departure
warning and lateral control can be addressed by detecting
the lane markings of the road by means of a forward–facing
camera and computer vision techniques. In this paper we
focus on this problem, which, actually, is one of the oldest
in ADAS. Many papers have been published on it, since
it is a difficult and not yet completely solved problem due
to shadows, vehicles occluding the marks, partially erased
marks, vehicle ego–motion, etc. Basically, the different pro-
posed algorithms have a first step to collect cues on where
the lane markings are, and a second step that uses them to fit
a lane model. Some type of tracking is commonly added to
minimize disturbances from image clutter and facilitate real–
time. Since, ideally, lane markings are white lines over a grey
pavement, the first step is usually based on image edges,
defined as extrema of the gradient magnitude along the
gradient direction. Depending on the posterior processing, it
is also possible to work directly with the gradient magnitude
as an edgeness measure. In all cases, gradient direction can
be used to remove edges/edgeness having an orientation
outside the expected range of values.

However, the gradient magnitude can be misleadingly high
due to the contrast between the asphalt and road elements
(e.g. vehicles) or be low because of shadows, wearied marks,
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etc. Moreover, the gradient orientation tends to be noisy be-
cause its very local nature. In fact, these usual circumstances
are challenging, since for a road with low traffic, well painted
lane markings, shadow free, etc., a well–designed computer
vision algorithm may succeed. Therefore, methods based on
edge detection algorithms must devise strategies to cope with
these problems (e.g. local adaptive thresholding, hysteresis
thresholding, etc.).

The main contributions of this paper are two. The first
one, presented in Sect. II, is to explore a different low–
level image descriptor, namely, the ridgeness, with the aim of
having a more reliable lane marking detection under adverse
circumstances. Besides, in the same process we obtain an
associated orientation which is less noisy than that of the
gradient and will be of high usefulness for fitting a lane
model. Secondly, we have adapted RANSAC, a generic
robust estimation method, to fit a parametric model to the
image lane lines using as input data both ridgeness and
orientation (Sect. III). The model consists of a couple of
hyperbolas, which are constrained to come from parallel lane
markings. We claim that a better feature type (ridges) and a
robust fitting method (RANSAC) contribute to improve the
lane lines detection reliability. In Sect. IV we show current
results of the proposed method and discuss its performance.
Finally, Sect. V summarizes the main conclusions and future
work.

II. LANE MARKINGS AS RIDGES

By ridges of a grey–level image we refer to the center
lines of the elongated bright structures appearing in it. In
our case, these bright structures are the lane markings, then,
their ridges are the longitudinal center of the painted line
(Fig. 1 left). This terminology comes from seeing an image
as a landscape, since then these center lines correspond to
the landscape’s ridges (Fig. 1 right). Ridgeness stands for
a measure of how much a pixel neighborhood resembles
a ridge. Therefore, a ridgeness measure must have high
values along the center lines of the lane markings and
low values when approaching the longest boundaries of
the paint. A binary ridge image, corresponding to the lane
marking centerlines, can be obtained by simple thresholding,
provided we have a ridgeness measure with a sufficiently
well–contrasted and homogeneous response.

There are different mathematical definitions to characterize
ridges. However, in [2] we proposed one that compared
favorably to others and that we have adapted for the problem
at hand. Let Gσ (x) be a 2D gaussian of standard deviation
σ and let L(x) be the grey–level image, being x = (u,v)
where u is a column and v a row. Then, conceptually, our
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Fig. 1. Left: road image with a region of interest (ROI) outlined. It is
shown what we call center lines of the road lane markings. Right: the ROI
seen as a landscape. Note that lane markings resemble mountains, and that
their ridges correspond to the center lines of the lane markings.

ridge operator is based on the following steps:

1) Compute a smoothed version of the image, namely

Lσd(x) = Gσd(x)∗L(x) ,

where ‘*’ denotes convolution.

2) Compute the gradient vector field

wσd(x) = (∂uLσd(x),∂vLσd(x))T ,

3) Compute the so–called structure tensor field

Sσd,σi(x) = Gσi(x)∗ sσd(x) ,

being
sσd(x) = wσd(x) ·wT

σd
(x) .

4) Obtain the eigenvector corresponding to the highest
eigenvalue of Sσd,σi(x), namely w′

σd,σi
(x). It is known

that w′
σd,σi

(x) yields the dominant gradient orientation
of the original image at x and is perpendicular to the
dominant image orientation at x (f.i. if x is from a lane
marking then the dominant image orientation is along
it). Therefore, its is a more robust orientation measure
than the image gradient itself (wσd(x)).
It is worth to notice that w′

σd,σi
(x) defines an orientation

field (arrows without head) in the image but for the
next step we need a vector field. For this reason we
project w′

σd,σi
(x) into wσd(x) as:

pσd,σi(x) = w′
σd,σi

T(x) ·wσd(x) ,

and define the following vector field:

w̃σd,σi(x) = sign(pσd,σi(x))w′
σd,σi

(x) , (1)

where the function sign(x) returns +1 if x > 0, −1 if
x < 0 and 0 if x = 0.

5) Finally, our ridgeness measure is defined as the posi-
tive values of

κ̃σd,σi(x) = −div(w̃σd,σi(x)) , (2)

where div() means divergence of a vector field.

The parameter σd is the differentiation scale in opposition
to σi which is the integration scale. The former must be
tuned to the size of the objects whose orientation has to be
determined, while the later must be tuned to the size of the
neighborhood we want to use in order to compute dominant
orientation.

The positive values of κ̃σd,σi(x) give a degree of how much
an image pixel resembles a ridge point. In fact, we have
shown [3] that these values are in the range [0,2], where 0
means it is not a ridge, about 1 means it is a ridge, and 2
means it is a perfect image maximum. Besides, we also have
shown [3] that these values are homogeneously distributed
along the center lines, therefore, facilitating thresholding (if
needed). Other properties of κ̃σd,σi(x) are invariance under
monotonic grey–level transforms and rigid movements of the
input image. These properties make ridgeness better suited
for lane-marking detection.

We have adapted this operator specifically for the
extraction of lane marking points in the following way:

• The ridgeness measure applied to road images must
take into account the perspective. In this work we
smooth differently depending on the image row, -lower
image rows are smoothed more than the upper ones-,
in order to avoid smoothing away far line segments.

• Since the dominant orientation of a lane marking is
perpendicular to the dominant gradient orientation, and
therefore perpendicular to w̃σd,σi(x), this vector field
can be robustly used to discard pixels whose associated
orientation is not coherent with the expected by lane
markings model.

• The ridgeness measure presents invariance under mono-
tonic grey–level transforms of the input image helps
lane detection in presence of shadows, as opposite to
what edge based measures do. However, this means that
ridgeness also enhances some non–spurious irregulari-
ties of the asphalt grey–level. Fortunately, this can be
solved up to a large extent by discarding those ridgeness
values surrounded by a very low gradient magnitude.

III. DELINEATION OF LANE MARKINGS BY A

HYPERBOLIC MODEL FITTED USING RANSAC

A. Lane Markings Model

Horizontal road geometry consists of a combination of
straight segments and circular arcs (i.e. of constant radius
of curvature) connected by transition curves, which usually
correspond to clothoids. Mathematically, this means that the
curvature (K) is either constant or linearly variable [4]. Lane
markings run parallel to road boundaries, therefore following
the previous mathematical model. However, since we aim to
detect lane markings from images, we must transform the
real world model into a projected model. For that purpose
we must define the image acquisition geometry. In particular,
we use a forward–facing camera placed close to the rear–
view mirror of the vehicle. The camera is supposed to be at
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Fig. 2. Image acquisition geometry.

a height z0 above the ground and with an angular deviation
θ from the road plane (pitch angle). The vehicle is placed
at a distance x0 from the principal axis of the lane (lateral
position), and with an angular deviation ψ from it (steering
angle). We assume a flat road of constant K inside the camera
field of view. Although assuming constant K may seem a
hard constraint, in practice curvature varies smoothly enough
to allow this approximation. The road lanes are also assumed
to have a constant width L for the same image, although this
width can vary along the sequence. Figure 2 illustrates the
whole scenario.

Under these assumptions it has been shown [5] that a
curved lane marking is projected into the image plane as a
branch of hyperbola with a horizontal asymptote very close
to the horizon line. A model that fulfills this observation can
be found in [6], where the expression for the projected curves
corresponding to the left and the right lane markings are:

uL = Eu

(
v−Evθ

Evz0

(
x0 − L

2

)
− Evz0

2(v−Evθ)
K −ψ

)
,

uR = Eu

(
v−Evθ

Evz0

(
x0 +

L
2

)
− Evz0

2(v−Evθ)
K −ψ

)
, (3)

where Eu = f /du, Ev = f /dv, f is the focal length of the
camera, and du and dv are the width and height of a pixel,
respectively. Therefore Eu and Ev are known parameters, and
z0 and θ can be estimated through calibration.

B. Fitting the Model

a) Data to fit the model: The first step is to identify
the (u,v) points that are more likely to correspond to lane
markings. As candidate points we take the image pixels x
with ridgeness (Eq. (2)) greater than a positive threshold
value r, i.e. with κ̃σd,σi(x) > r. Now on we denote these
pixels as ridgels. Ideally, we would like to use some ridgels
to adjust the left curve and the others for the right one. Since
the camera is centered with the vehicle we can guess if a
candidate ridgel is more likely to belong to the left lane
marking than to the right one. Left and right ridgels are dis-
tinguished according to the value of their u–coordinate with
respect to a fixed image column (uvanish). This image column
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Fig. 3. The detected features are divided in three groups, depending on
their position in the image. Ridgeness is computed from the row (vmin) to
the bottom of the image.

is currently fixed from frame to frame and corresponds to the
u–coordinate of the image vanishing point when the vehicle
is centered (x0 = L/2 and ψ = 0) in a straight lane (K = 0).
However, in presence of a curved lane this simple criterium
is only reliable near the vehicle. Therefore, from the initial
row where ridgels are computed (vmin) to another row below
it (vcommon), we assume that the ridgels can belong either to
the left lane marking or to the right one. Thus, the image
is divided in a left lane region, a right lane region and a
common region, as depicted in Fig. 3.

b) Robust model fitting: Let (uL,vL) = ({uL,i},{vL,i}),
i = 1 . . .NL, be the set of ridgel coordinates classified as
left, and (uR,vR) = ({uR,i},{vR,i}), i = 1 . . .NR, the set of
the right ones; ridgels located in the common region are
included in both sets. Thus, ridgels belonging to the searched
curves must satisfy equations in (3). This can be compactly
expressed as:

(
1 Evθ −vL vL −Evθ 1

vL−Evθ
1 vR −Evθ vR −Evθ 1

vR−Evθ

)
a =

(
uL
uR

)
, (4)

which is a linear system on a if we assume that θ is known.
Thus, fitting the model means finding the unknown variables
in a = (a1,a2,a3,a4)T, which implies that we simultaneously
adjust both left and right curves, and we think this is a good
approach since both curves are coupled in the real world.
Once we obtain a, the unknown parameters of the physical
model can be estimated using the following relations:

ψ =− a1

Eu
, L =

2Eva2z0

Eu
, x0 =

Eva3z0

Eu
, K =− 2a4

EuEvz0
.

From a theoretical point of view in order to find a
only 4 ridgels are needed, provided that at least one ridgel
corresponds to the left lane marking and at least one to the
right one. Since we will have in general much more than 4
ridgels, and some of them can be clutter, a must be estimated
using a sufficiently robust technique, ideally able to select the
best 4 ridgels for the fitting. For this purpose we propose to
use the RANdom SAmple Consensus (RANSAC) [7].

RANSAC is a robust estimation technique based on the
principle of hypotheses generation and verification. Given a
model requiring a minimum of N data points to instantiate
its free parameters, and a set of data points P containing
more than N elements, the RANSAC algorithm can be
stated as follows:
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• For i = 1 to Imax, where Imax is a predetermined
maximum number of iterations (trials):

– Randomly select a subset Si of N data points from
P and estimate the parameters of model Mi.

– Use the instantiated model Mi to determine the
subset S∗i of points in P that are within some error
tolerance of Mi. The set S∗i is called the consensus
set of Si. Therefore, in this step the definition of
an error function e f and an error tolerance et is
needed.

– If the number of data items of S∗i is greater than
some consensus threshold ct , use S∗i to compute
(possibly using least squares) a new model M∗

i
and terminate with success.

• If no consensus set with ct or more members has
been found, either solve the model with the largest
consensus set found, or terminate with failure.

At this point, it is clear that in our problem we have N = 4,
the P set is composed by the ridgels ((uL,vL) and (uR,vR)),
and model Mi is estimated using equations in (3). Therefore,
the main roles to define are Imax and e f .

A selection criterium for Imax is also proposed in [7].
Let pw be the a priori probability that a given data point
is within the error tolerance of the correct model (it is not
an outlier). If we want to ensure with probability pz that at
least one of our random selections is an error–free set of N
data points, then we must expect to make at least T trials
(N data points per trial). Therefore, we can set Imax ≥ T ,
where T = log(1− pz)/ log(1− pN

w). However, currently we
have not done any process to estimate pw and we have just
experimentally adjusted Imax.

With respect to the error function e f , which defines the
selection criteria of the consensus set for each trial, we
propose the use of two factors. The former consists of a
distance between the candidate ridgel and the estimated
model (curve) for the current trial. The latter takes into
account the orientation of the model curve and the dominant
orientation of the image at the ridgel xr. Therefore, the value
of w̃σd,σi(xr), computed using Eq. (1), plays a relevant role
in our fitting algorithm. Besides, and before checking these
factors, we test if the distance between the curves under
consideration makes sense according to the expected range
of lane widths, and if it is not the case we just discard the
current trial and go further to a next one.

Since the curves we search are hyperbolas, as first factor
of e f we propose Sampson’s distance between a point and
a conic [8]. Given the curves defined by the point subset Si

following equations in (3), Sampson’s distance to that curves

from a candidate ridgel xr = (ur,vr) is given by:

ds(ur,vr) =
(k2 + k4 (−2k3 + k1 k4))

2

4
(

k4
2 +(k3 − k1 k4)

2
) , (5)

where
k1 = Eu (µL−2x0)

Ev z0
,

k2 = Eu Ev K z0 ,
k3 = Evθ − vr ,
k4 = ur +Euψ ,

with µ = +1 for the left curves, and µ = −1 for the right
ones.

For those ridgels fulfilling the Sampson’s distance cri-
terium, the second factor of the error function is computed.
Given a ridgel xr, the point of the conic, say xc = (uc,vc),
that is closest to xr is assumed to be at the same image
row (vr = vc), which is a fair approximation. Under this
assumption the orientation of the conic (tangent) at xc can
be computed as:

α(uc,vc) = arctan(
Evθ − vc

uc + c1 +(Evθ − vc)c2
) ,

where

c1 = Euψ and c2 = −µ
Ev L
Ev z0

+
2Eu x0

Ev z0
.

Thus, we understand that the orientation of the candidate
ridgel xc = (uc,vc) matches the dominant image orientation
(the one expected for the lane markings) at xr if it is
perpendicular to w̃σd,σi(xr).

Finally, it is also worth to comment that, in practice,
the pitch angle θ is actually unknown since this parameter
varies when the dampers actuate, which happens because
of a pothole on the road, a sudden slope change, or with
acceleration and braking. Hence, the angle obtained from
a calibration of the camera would not be valid for every
image. This means that if we do not have an additional sensor
able to measure θ on–line then we must estimate it from
the own image. A possibility consists of testing different
hypothesis for θ when doing the RANSAC based fitting.
Another possibility is to use some estimation method to
chose the optimum value for θ according to the goodness of
the obtained fittings. Currently, we have adopted the former
option, while the latter is under research.

IV. RESULTS

We have tested the proposed method in sequences acquired
by different CMOS based cameras. In all cases the images
are of 640×480 pixels, but we sub–sample them to the half
in order to speed up the process. Experimentally we have
checked that this sub–sampling does not affect the results.

Figure 4 shows the ridgeness response in different adverse
circumstances: deteriorated lane markings, presence of white
vehicles, shadows, high curvature curves, and night. We think
that these results are sufficiently good as to use ridgeness
as evidence of the presence of lane markings. In fact, in
order to speed up the processing and thanks to the well–
behaved dynamic range of this measure, we are considering
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as ridgels just those pixels x with κ̃σd,σi(x) > 0.25 (we
remind that the maximum value for κ̃σd,σi(x) is 2 for 2D
images). Also, to reduce clutter and speed up the process,
as general rule we discard a ridgel xr if w̃σd,σi(xr) is in
[3π/4,5π/4], which happens for lane markings with a large
horizontal component. Of course, this could be a problem
for curves with a very high curvature. However, we have
checked experimentally that this criterium performs well for
curves that can be taken at a speed of more than 40 km/h.

We remark that these rules for selecting relevant ridgels
have been used in all our sequences with the same parameter
settings, even though the camera, optics and vehicles were
not the same for all the sequences. From sequence to
sequence we tried to have a similar vanishing point location
looking at a straight flat road, but the adjustment was done
manually without trying to be too precise.

For fitting the hyperbolas to the ridgels we also set the
same parameter values for all sequences. The more relevant
are Imax = 1000 for the number of trials of the RANSAC, and
ct = 4 for the consensus threshold (which is not a too low
value provided the Sampson’s distance and orientation cri-
teria have been set more demanding). Moreover, we explore
the goodness of the fittings under 3 pitch angles (θ ): the
expected one (fixed), one below and another above. Besides,
we also demand to the method a minimum number of trials,
in particular, 25. This means that the RANSAC will test the
goodness of at least 25 models and a maximum of 1000.

Fitting results under different circumstances are shown in
Fig. 5: presence of continuous and discontinuous lane mark-
ings, cars almost occluding all the lane markings, going out
and entering tunnels, disturbances from non–lane markings
marks and roadworks, presence of shadows, and night images
of low contrast and with large reflections. Figure 6 shows
several representative frames of a sequence where the ego–
vehicle runs on a curved road that bifurcates in two.

It is worth to notice that in our experiments we found very
relevant the use of the w̃σd,σi(x) vector field in the RANSAC
based fitting.

Finally, we point out that the proposed method runs in
about 40 ms/frame in a 2.0 GHz Pentium IV.

V. CONCLUSIONS

We have introduced ridgeness as low–level image de-
scriptor for detecting lane markings using a forward–facing
camera. We have illustrated how this measure is able to
output high values indicating the presence of lane markings
even in challenging situations. Besides, the ridgeness com-
putation process also outputs a vector field perpendicular to
the dominant orientation of the image at each pixel.

In addition, we have also proposed as novelty the adap-
tation of RANSAC, a general robust estimation method, to
simultaneously fit in the image plane the couple of hyper-
bolas which approximately correspond to the projection of
the actual lane markings. The main points of the adaptation
consists of using the ridgeness measure as input data for
fitting and then Sampson’s distance as well as the above
mentioned associated vector field to asses the goodness

Fig. 4. Right column: ridgeness of lane markings. The dotted line is the
fixed initial row below of which ridgeness is computed (vmin in Fig. 3). In
the original images we see deteriorated lane markings: (1) the right one;
(2) the left one (partially black because of wheel residues after some hard
brake). (3) White vehicles in the scene. (4) High curvature right curve. (5)
Night image with a dirty left discontinuous line. Shadows: (6) entering a
tunnel; (7) the left line is partially in shadow and the right is completely.

of the fitting. While Sampson’s distance can probably be
replaced by some geometric distance, taking into account the
dominant orientation of the image appears as very relevant
in our experiments. Therefore, it becomes more critical the
fact that this orientation is more robust if it is based on the
vector field associated to the ridgeness measure than if it is
based on the image gradient vector field, which has a more
local nature, i.e. the idea of dominant orientation does not
appear.

Another point to remark is the fact that to fit the two
hyperbolas only 4 parameters must be estimated (assuming
a fixed pitch angle) which together with the simplicity of the
goodness assessment makes possible the use of RANSAC in
the required real–time.

It is also worth to notice that, like in other works, our ap-
proach can output lane curvature as well as vehicle position
and orientation inside the lane in real–time. Of course, for
that we need first to calibrate the camera.

Examples illustrating that the proposed method is a
promising framework for lane marking detection have been
presented too.

Note that this paper has focused the lane marking detection
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Fig. 5. Curves on images acquired using different CMOS cameras and
vehicles. In all cases, since the horizon is similarly located, we have used
the same parameters. We can see: (1,2,3) Curves in presence of continuous
and discontinuous lane markings. (4) With cars almost occluding all the lane
markings at the left of our lane. (5,6) Going out and entering tunnels. (7,8)
Disturbances from non–lane markings marks and roadworks, resp. (9,10)
Special discontinuous lane markings. (11,12) Presence of shadows. (13,14)
Night images of low contrast and with large reflections, resp.

in a single frame. Our next step is to add temporal coherence
by tracking either the fitted model parameters or the physical
ones along time (f.i. using a Kalman–like filter). Using
tracking techniques, the system shall be more robust under
spurious errors, and image processing will speed–up, since
the parameters of the lane markings detected in a frame
can be used to process less image pixels in the following
frame. Another point under research is the estimation of the
best pitch angle in a single–frame basis, for its posterior
incorporation to the tracking.
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