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Abstract

This paper presents an adaptation of the Alternation
technique to tackle the prediction task in recommender sys-
tems. These systems are widely considered in Electronic
commerce to help customers to find products they will prob-
ably like or dislike. As the SVD-based approaches, the pro-
posed adapted Alternation technique uses all the informa-
tion stored in the system to find the predictions. The main
advantage of this technique with respect to the SVD-based
ones is that it can deal with missing data. Furthermore, it
has a smaller computational cost. Experimental results with
public data sets are provided in order to show the viability
of the proposed adapted Alternation approach.

1. Introduction

It is well known that the amount of information avail-
able on the Web increases constantly. Due to that fact,
sometimes it becomes difficult to search for interesting in-
formation, while discarding useless content. Therefore,
there is a clear demand for methods that give informa-
tion with respect to users’s preferences. Recommender
systems target this demand by helping users to find items
they would probably like or dislike using only a few given
preferences. That is, users give rates only to some items
and the system is capable of predicting their punctuation
to the rest of items (this is called prediction task). Fur-
thermore, it can also recommend them the products they
would probably like most (recommendation task). These
two powerful tools are widely used on e-commerce Web
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sites. Since their introduction in 1990s, the recommender
systems have been used to filter information on the Web and
to provide recommendations about books, CDs, movies,
news, electronics, financial services, travel, etc. One of
the most popular recommender system is the one used at:
http://www.amazon.com. The customer rates some books
and the system suggests him other books using informa-
tion from other customers. One different recommender
system is used at: http://www.everyonesacritic.net, where
users give their opinion about movies and the system makes
recommendations from people who share similar tastes. In
fact, in most cases, the main goal of recommender systems
is to discover which products will like a customer at most,
in order to increase sales and therefore, benefits. Of course
this helps also the customer, who will find, in theory, some-
thing useful to him.

In recommender systems, data are stored into a large ta-
ble of users (also denoted as customers) and items (or prod-
ucts). Actually, the information is stored into a matrix of
data, whose rows and columns correspond to each user and
item respectively, and whose entries correspond to the rates
that customers give to items. In real problems, there is a
wide set of both customers and items. Hence it is necessary
to deal with large matrices. Furthermore, since each user
only rates a subset of the large set of items, most entries of
the data matrix are empty and the matrix tends to be very
sparse.

One technique widely used in recommender systems is
the collaborative filtering (e.g., [11], [13], [6]), which is
usually based on finding neighbourhoods of similar cus-
tomers that are obtained by computing the correlation be-
tween their opinions. The similarity function is different in
each approach. Although this technique is useful in many
domains, it has a high computational cost and has limited
prediction when dealing with very sparse data, as pointed
out in [12] and [4]. In fact, Billsus et al. [2] identify two im-
portant limitations in the collaborative filtering techniques.
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The first one is that the correlation between two users rates
can only be computed on items that both users have rated.
Since, in general, there are thousands of items to rate, the
number of overlapped items is small in most cases and the
similarity measure is based on the correlation of only a few
items. The second problem is that with this similarity mea-
sure, two users can only be similar if there is overlap among
the rated items. As mentioned above, when the number of
items to rate is large, it is difficult to obtain overlap among
the rates.

Billsus et al. [2] present collaborative filtering in a ma-
chine learning framework to tackle the aforementioned lim-
itations. Their proposed approach is based on the Singu-
lar Value Decomposition (SVD) [7]. Other recommender
systems use the SVD (e.g., [10], [1], [12]) to reduce the
data representation and give predictions using linear regres-
sion. The main advantage of the SVD is that, not only the
information of correlated customers are used, but also the
obtained from users whose ratings are not correlated, or
who have not even rated anything in common. The SVD
allows to project user ratings and rated items into a lower
dimensional space. Thus, some users become predictors for
other users’s preferences even without any overlap of rated
items. Unfortunately, computing the SVD of a large ma-
trix requires a high computational cost. Furthermore, all the
data must be known. Therefore, in order to be able to apply
SVD, the missing data must be filled in. Some approaches
add zeros in the missing entries, while others fill them with
the corresponding row or column average (e.g., [12]). Then,
these previously filled in missing entries are actualized with
the SVD.

A different approach, based also in the SVD, is proposed
by Brand in [4]. Actually, it is an imputation method devel-
oped in [3] to predict the position of occluded features in
computer vision problems. In [4], it is used in data mining
tasks. Concretely, Brand presents a method for adding data
to a thin SVD1 data model, which is significantly quicker
and economical than the full SVD. Instead of computing
the SVD of a large matrix, he develops an exact rank-1 up-
date which provides a linear-time construction of the whole
SVD. The approach begins by sorting out the rows and
columns of the data matrix so that a high density of data
is accumulated in one corner. Then this initial full subma-
trix grows out of this corner by sequential updating with
partial rows and columns. An imputation update that maxi-
mizes the probability of correct generalization is used to fill
in the missing entries. One disadvantage of this technique
is that, as pointed out in [8], the result depends on how data
are sorted.

1Given a matrix Wm×n, being n � m, the thin SVD consists in com-
puting only the n column vectors of U corresponding to the row vectors of
V t. That is: Wm×n = Um×nΣn×nV t

n×n. The remaining columns of
U are not computed.

In addition to the aforementioned limitations, one prob-
lem of the collaborative filtering and most recommender
systems in general, is that they do not model properly a
human-to-human interaction, where the user and the adviser
interact. Focusing on this problem, conversational recom-
mender system have been recently proposed (e.g., [5], [9]).
These systems provide dialogues supporting the customer
in the selection process. Thus, by adding user feedbacks,
the system can make a better idea of the type of product
the user may be interested in. This kind of recommender
systems is out of scope of this work.

The current paper presents an approach that, as the SVD-
based approaches, uses the information from all the users,
not only from the correlated ones. Notice that the prediction
task in recommender systems can be seen as a way of fill-
ing in the missing entries in the data matrix. In particular,
an adaptation of the Alternation Technique [8] is proposed
as imputation method for recommender systems. Hence,
missing rates are predicted and the dimension of the data
is reduced. One of the advantages of the Alternation tech-
nique over the SVD is that, since it can deal with missing
data, it is not necessary to fill in the missing rates with zeros
or averages before applying it. On the other hand, its com-
putational cost is not as high as in the case of the SVD. The
proposed approach is focused on the prediction (not recom-
mendation) and its performance is compared with one of the
method proposed in [12].

This paper is structured as follows. First of all, the ap-
proach proposed in [12] is briefly introduced. Then, the pro-
posed adaptation of the Alternation technique to the prob-
lem of prediction task in recommender systems is presented.
Data sets and experimental results are provided. Finally,
concluding remarks are summarized.

2. A SVD-based Approach: Sarwar et al.’s Pro-
posal

Since the proposed adaptation of Alternation technique
to recommender systems is later on compared to the Sar-
war et al.’s [12] approach, this Section presents briefly their
proposal.

For the shake of simplicity, it will be referred to as Sar-
war’s approach hereinafter. As mentioned above, this ap-
proach is based on the SVD. Hence, first of all, given a
matrix of rates W that contains missing data, its missing
entries must be filled in.

Sarwar et al. [12] propose to fill in the missing data with
the corresponding column average. Then, the entries are
normalized by subtracting the corresponding row average.
Once the data matrix W has not missing entries, the SVD is
computed, given the decomposition: W = UΣV t. The best
rank-r approximation to W is obtained by keeping only the
r largest singular values of S, giving Σr. Accordingly, the
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dimensions of U and V are also reduced and the matrix:
Wr = UrΣrV

t
r is the closest rank-r matrix to W .

Finally, the predicted rate W (i, j) of the customer i to
the product j is obtained with the following expression:

W (i, j) = wj + (UrΣ1/2
r )(i)(Σ1/2

r V t
r )(j) (1)

where wj is the jth-column average.
One disadvantage of this approach is that the compu-

tational cost is very high. Due to that fact, with concrete
data sets, the number of customers and products must be re-
duced. In this paper, this approach is implemented by using
the aforementioned thin SVD, in order to reduce its compu-
tational cost.

3. Adaptation of the Alternation technique to
recommender systems

This Section proposes a variant of the Alternation tech-
nique [8], adapted to the prediction task in the recommender
systems.

Given a matrix of rates Wc×p, the goal of the Alternation
technique is to find the factors Ac×r and Br×p such that
minimizes the expression ‖Wc×p − Ac×rBr×p‖2

F , where
r is the rank of the data matrix. The product AB is the best
rank-r approximation of the matrix W in the sense of the
Frobenius norm [7]. Although the aim is the same as the
one of the SVD, the Alternation allows to deal with miss-
ing data and additionally, it has a far smaller computational
cost. As in the case of the SVD, A and B are r dimensional
representations of customers and products, respectively.

The Alternation technique is a two-step algorithm, which
starts with one random factor (A0 or B0) and compute one
factor at a time, until the product AB converge to W . The
product of the factors gives a filled matrix: Wimputed =
AB. Focusing on the recommender systems, it can be used
the fact that the entries in W take values in a known in-
terval: [m,M ], where m and M are the minimum and the
maximum rate values, respectively. The idea is to enforce
that the range of values of the entries in Wimputed lies in
this known interval. This is tackled later.

First of all, at each step of the Alternation algorithm, the
rows of A (B respectively) are normalized. The proposed
adapted Alternation is summarized in the following steps:

Algorithm: Given a data matrix Wc×p, which contains the
rates given by different customers:

1. Take a random matrix A0, normalize its rows.

2. Compute Bk from Ak−1
2:

Bk = (At
k−1Ak−1)−1At

k−1W (2)

2These products are computed only considering known entries in I .

3. Normalize the rows of Bk.

4. Compute Ak from Bk−1
2:

Ak = WBt
k(BkBt

k)−1 (3)

5. Normalize the rows of Ak.

6. Repeat the steps 2-5 until the product
Wimputed = AkBk converges to W .

Solution: Wimputed contains the predicted rates values.

Notice that the classical Alternation algorithm consists
in applying repeatedly the steps 2 and 4 from above until
the convergence is achieved.

Hence, with the normalization steps added to the algo-
rithm, each entry of the imputed matrix Wimputed(i, j) is
the scalar product between the ith–unitary row of A and
the jth–unitary column of B. That is:

Wimputed(i, j) = ai · bj = cos(αij) (4)

where ai and bj are the ith–unitary row of A and jth–
unitary column of B, respectively and αij could be inter-
preted as the angle between them (if they are considered as
vectors).

Therefore, if no restrictions are added, the entries of
Wimputed would take values in the interval [−1, 1]. How-
ever, as mentioned above, the aim is to achieve that the val-
ues in Wimputed lie in the interval [m,M ]. Hence, the val-
ues of the entries in Wimputed should be transformed. One
possibility is to transform them directly by using a linear
transformation. The problem is that the cosine function is
not linear. Instead of the cosine, the angles are studied.
This means that the arccosine must be applied to obtain
the angles. Therefore, an interval where the cosine is in-
vertible should be defined: the initial punctuation ratings
must be transformed in order to take values in the interval
[0, 1] instead of [−1, 1].

In addition, and in order to weight equally all the pos-
sible values, instead of considering values in [m,M ], the
interval [m − 0.5,M + 0.5] is taken (otherwise, the values
m and M are not considered as the rest of values).

The following steps summarize the transformation that
gives the initial values from the interval [m,M ] to [0, 1]:

1. W̃ = (W−m)
Δ , where Δ = M − m, W̃ (i, j) ∈ [0, 1]

2. W̃ = πW̃ , W̃ (i, j) ∈ [0, π]

3. W̃ = cos(W̃ ), W̃ (i, j) ∈ [0, 1]
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The adapted Alternation technique is applied to the
transformed matrix W̃ and W̃imputed, which contains the
prediction rates, is obtained. Finally, the above transforma-
tions must be undone:

Wimputed =
arccos(W̃imputed)

π
Δ + m (5)

Hence, the values in Wimputed lie in [m,M ], as the val-
ues in the initial missing data matrix W . Notice that the
arccosine can be applied because it is invertible in the in-
terval [0, π].

4. The r selection

The rank used to obtain the best predicted rates depends
on the approach used in the prediction task.

Unfortunately, the rank of the matrix is not known a pri-
ori and it can not be directly computed, when working with
missing data. Hence, the problem of estimating the rank of
a missing data matrix W should be faced out.

Sarwar et al. [12] point out that it is important to choose
the optimal r in order to obtain good predicted values. They
search for a r-value large enough to capture all the im-
portant information in the matrix, while small enough to
avoid overfitting errors. However, results obtained with
their method do not vary so much considering different rank
values.

In the incremental SVD presented by Brand [4], it is pro-
posed to use the rank value as a measure of complexity of
the model. The objective is to maximize the probability of
correct generalization, while minimizing the complexity of
the model. Furthermore, Brand points out that users ratings
data have poor repeatability from day to day. Therefore, a
good low-rank approximation of the data has higher proba-
bility of generalization than a medium-rank model that per-
fectly reconstructs the data. His experiments show that the
incremental SVD, with rank 4 or 5, predicts the missing
rates better than matrices with higher rank. Brand points
out that the higher the singular values are, the more con-
strained the imputation is by previous inputs, and therefore,
the better the estimated SVD. With only a few rated items,
the SVD has small singular values. In general, in those
cases, a smaller rank will give better predicted rates.

If W has rank r and the Alternation technique is used
to approximate it by a rank r̃ matrix, being r̃ > r, noise is
added to the data during the process, in order to achieve a
higher rank matrix. Consequently, the missing entries are
wrongly filled in. On the contrary, if the matrix is approx-
imated by a rank-r̃ matrix, with r̃ < r, information is lost
during the process. The missing entries are again wrongly
filled in. Hence, the goodness of the predicted values ob-
tained with the Alternation depends on the used rank value.

In Section 6, it will be shown that using the proposed adap-
tation of the Alternation for recommender systems, the best
predicted rates are obtained, in general, for r = 4 or r = 5,
as in [4]. In extreme cases, with large amount of missing
data, r = 3 or r = 2 are enough.

Having in mind the importance of a proper rank selec-
tion, our experimental results and comparisons have been
performed considering a range of different rank values. The
error considering each rank value is computed. Finally, the
smallest rank for which a minimum error is obtained is se-
lected. Actually, a similar procedure is carried out in the
aforementioned approaches. The case r = 1 is not consid-
ered, for any approach, since it makes no sense to project
the data onto a 1-dimensional subspace.

5. Data sets

Data sets used in the experiments are introduced in this
Section. Concretely, three different public data sets are con-
sidered.

The first data set is the one provided by the MovieLens
recommender system (http://www.movielens.umn.edu),
which is a Web-based research recommender system.
One of the data sets they give consists of 100,000 ratings
(discrete values from 1 up to 5) from 943 users and 1,682
movies. A user-movie matrix W , formed by 943 rows
and 1,682 columns, is constructed. Each entry W (i, j)
represents the rating (from 1 up to 5) of the ith-user on the
jth-movie. This data set is also used in [12] and [4]. Since
the goal is to study the goodness of the obtained predicted
values, some entries are randomly removed and used to
study the corresponding recovered values. These entries
form the test data set. The rest of the entries used to recover
the data are the train data set. Concretely, five different train
and test data sets, split into 80,000 train and 20,000 test
cases, are also given at: http://www.movielens.umn.edu.
The initial data matrix has 93.69% of missing data, while
using any train data set, a matrix of 94.95% of missing data
is obtained.

The second data set is the one obtained from BookCross-
ing, a service where book lovers exchange books all
around the world and share their experiences with others
(http://www.bookcrossing.com). Ziegler et al. [13] collect
data from 278,858 members of BookCrossing, referring to
271,379 different books. A total of 1,157,112 rates are pro-
vided. These rates take implicit (0) and explicit (from 1
up to 10) discrete values. The data set used in [13] is avail-
able at: http://www.informatik.uni-freiburg.de/∼cziegler. If
all available data are used, the obtained data matrix is ex-
tremely sparse (concretely, it has a percentage of missing
data of about 99.9968%). In our experiments, a smaller ma-
trix with a higher density of known data, is considered. In
particular, it is required that each user rates a minimum of
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books. At the same time, only the books that have been
rated by a minimum of users are considered. Different min-
imum values will be considered in the experiments, as pre-
sented in Section 6.

Finally, the last data set used in the experi-
ments is obtained from Jester, an online joke rec-
ommender system: http://eigentaste.berkeley.edu.
The complete data set is publicly available at:
http://www.ieor.berkeley.edu/∼goldberg/jester-data/ .
Concretely, 4.1 million continuous rating (from -10 up to
10) of 100 jokes from 73,421 users are provided. In this
case, different users (rows) are selected randomly, given a
matrix with smaller dimensions. The data set is presented
in [6], where Goldberg et al. present a collaborative filter-
ing algorithm based on the principal component analysis
(PCA) to obtain the predictions in the Jester recommender
system. In particular, the authors propose to project the data
into the eigenplane with the PCA. Then, the projected data
are clustered by using a recursive rectangular clustering.
When a new user ask for recommendations, first, the rates
the user gives are projected onto the eigen plane. Then,
the representative cluster of the user is found. Finally,
recommendations are computed from rates collected in the
cluster.

6. Experimental results

As mentioned above, this work is focused on the predic-
tion task in recommender systems. The performance of our
approach is compared with the method presented in [12].
For the comparison, the Mean Absolute Error (MAE) is used
as a measure of goodness of the recovered values. This is
the measure of goodness used in most proposed approaches
for recommender systems and it is defined as follows:

MAE =
1
N

∑
i,j

|Pij − Wij | (6)

where i, j correspond to the indexes of the artificially re-
moved entries in W (test data set), N is the number of these
removed entries and Pij is the obtained predicted value for
the entry Wij .

Due to the different nature of the data in each data set,
different experiments are carried out with each one and the
obtained results are presented separately in every data set.
For instance, the percentage of available data and the size
o the matrices are different in each data set. Another char-
acteristic that should be taken into account is that the rates
can take discrete or continuous values.

6.1. MovieLens Data Set

In this data set, rates take integer values from 1 up to 5
and the percentage of missing data is about 94.05%. With

such amount of missing data, experiments considering dif-
ferent percentages of missing data would not give signifi-
cant conclusions. Five different train/test sets are used in
the experiments and the mean of all the train/test sets are
given.

Different r-dimension values (equivalently, r-rank val-
ues) are tested (from 2 up to 20) and the one for which the
MAE is minimum is chosen.

The mean of the obtained results in the five test/train data
sets, for each rank value, is plotted in Fig. 1. The minimum
error (MAE) obtained with the proposed approach (denoted
as ALT in the plots) is smaller than the one obtained with the
approach proposed in [12] (denoted as Sarwar’s approach
and as SVD in the plots), as it can be seen in Fig. 1 (a). Con-
cretely, with the adapted Alternation approach, the smallest
MAE value is obtained in the rank-4 case and its value is
0.7703. With Sarwar’s approach, the minimum error (MAE
= 0.7772) is obtained in the rank-16 case. The results pre-
sented in [12] are a little different: the obtained MAE is
about 0.7400 for the rank-14 case. This difference is pos-
sibly due to different test/train splits. Notice that, in both
approaches, a MAE with this value means an error of about
± 1 in the prediction task. As pointed out in [4], this is very
accurate, since difference may reach ± 2 values if the user
is asked in different days.

From our results, it can be concluded that the data space
can be reduced to a 4-dimensional subspace, as it is also
concluded in [4], where this data set is also studied. Un-
fortunately, open source of that algorithm is not available
for a fair comparison. Sarwar et al. [12], found that a 14-
dimensional subspace is needed in order to capture all the
variance in the data. In fact, in their approach, the MAE
does not change much considering different dimensions, as
it is shown in Fig. 1 (a).

The computational cost for both approaches is depicted
in Fig. 1 (b). It can be seen that our method is clearly faster,
for all the tested rank values.

6.2. BookCrossing Data Set

The matrix obtained with this data set is very sparse.
Concretely, it has a percentage of missing data of about
99.9968%. In order to obtain a matrix with more density
of data, the users that have rated less than 20 books are dis-
carded, while at the same time, only the books that have
been rated by at least 200 users are considered. Since books
and users are discarded at the same time, the above condi-
tions do not means that every row and column have more
than 20 and 200 known entries, respectively. In fact, with
this two conditions, the number of considered users (rows)
and books (columns) are 17,197 and 193, respectively and
the percentage of missing data is about 98.5094%. Again,
5 different test/train data sets are generated. Concretely,
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Figure 1. MovieLens Data Set: (a) MAE considering different rank values; (b) computational cost in
seconds.

the test data set contains 0.4906% of known data, while the
train data set only 1% of known data.

Fig. 2 (a) shows the obtained MAE values, consider-
ing different rank values when a matrix with a 98.5094%
is considered. It can be seen that the minimum error is
obtained with the Alternation, for r = 2. Concretely,
MAE = 3.5811. With Sarwar’s approach, the minimum
error is also achieved for r = 2 and MAE = 3.7535. With
only a 1% of known data, a 2-rank matrix predicts better the
missing rates than a matrix with a higher rank.

Notice that the error in this case is larger than in the ex-
periments with the MovieLens data set. However, since the
rates lie in different ranges, another measurement should be
defined. Goldberg et al. [6] propose to use the Normalized
Mean Absolute Error (NMAE) in order to compare errors
obtained from different data sets. The NMAE is defined
as:

NMAE =
MAE

M − m
(7)

where M and m are the maximum and minimum value in
the range of rates, respectively. Using this new measure of
error, the results obtained with the proposed approach and
both data sets can be compared: in the case of the Movie-
Lens data set, MAE = 0.7704, which gives NMAE =
0.1926, while in the case of BookCrossing data set, the ob-
tained MAE is 3.5811, which gives NMAE = 0.3581.
Effectively, the error with this second data set is higher than
with the MovieLens’ one. Recall that with this second data
set, the percentage of missing data is higher.

In order to test different data matrices, a similar experi-
ment is carried out, requiring a smaller number of rates per
book. Concretely, books from the original matrix that have

been rated by less than 150 users are discarded. Hence, in
this experiment, the number of considered users and books
are 21,026 and 354, respectively and the percentage of miss-
ing data is about 99.0465%. Hence, the obtained matrix has
larger dimensions and more missing data. Concretely, test
data set contains 0.1535% of data, while the train data set
contains only 0.8% of data.

The obtained MAE values in this case are plotted in
Fig. 2 (b). Notice that the minimum MAE is obtained with
the Alternation, for r = 2. Its value is 3.4051. With the
Sarwar’s approach, the MAE = 3.7215 and it is obtained
for r = 12. However, similar results are obtained for any
rank value.

6.3. Jester Data Set

The rates in this data set take continuous values from -10
up to 10. The obtained matrix contains the rates given by
73,421 users to 100 jokes and the percentage of known data
is about 48%.

Different percentages of missing data are generated by
randomly removing data (concretely, 60%, 70%, 80% and
90%). The removed entries form the test data set, while the
rest of the data form the train data set. Again, 5 different
train/test data sets are considered at each experiment. Only
18,000 users from the total of 73,421 are randomly selected
for the experiments, as in [6].

Fig. 3 shows the error (MAE) value obtained considering
different percentages of missing data and different rank val-
ues (from 2 up to 20). It can be seen that in the case of Sar-
war’s approach, the obtained MAE is quite similar for any
rank value. Concretely, the minimum MAE is achieved with

133133



2 4 6 8 10 12
3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

rank value

M
A

E

 

 

SVD
ALT

2 4 6 8 10 12
3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

rank value

M
A

E

 

 

SVD
ALT

(a) (b)

Figure 2. BookCrossing Data Set: obtained MAE considering different rank values; (a) the data matrix
has 98.5094% of missing data; (b) the data matrix has 99.0465% of missing data.

r = 14 and r = 12, with 60% and 70% of missing data.
With percentages of missing data of about 80% and 90%,
the minimum MAE is obtained with r = 3 and r = 2, re-
spectively. In the case of the Alternation, the MAE value
depends on the rank value, as it can be appreciated in Fig. 3.
The minimum MAE is obtained for r = 5, while the per-
centage of missing data is below 90%, in which case, the
minimum MAE is obtained with r = 4 (see Fig. 3 (d)).

The obtained MAE values are similar to the ones pre-
sented in [6], which studies the same data set. Unfortu-
nately, no comparison can be performed with [6], since the
authors do not provide an accurate information about the
percentage of missing data they consider, nor the used rows
(they select 18,000 rows randomly).

Although the obtained MAE seems to be higher than
the obtained with the MovieLens data set, the ratings lie in
different ranges. If the NMAE proposed by Goldberg et
al. [6] is used, it can be seen that the results are similar with
both data sets. In the case of the MovieLens data set, the
values obtained with the proposed approach are as follows:
MAE = 0.7704, which gives NMAE = 0.1926, while
in the case of Jester data set, the MAE obtained with 90%
of missing data is 3.8959, which gives NMAE = 0.1948.
Therefore, the goodness of the predicted rates is quite simi-
lar in both cases.

7. Conclusions

The Alternation technique is adapted to tackle the pre-
diction task in recommender systems. Concretely, a variant
of this technique, which uses the fact that rates take val-
ues in a known interval, is presented. As in the SVD-based

approaches, not only correlated customers are used in the
prediction task, but also non correlated ones.

The proposed adapted Alternation is compared to the ap-
proach presented in [12]. Three different public data sets,
obtained from three different recommender systems, are
studied. Experimental results show that the proposed ap-
proach performs better than the SVD used in [12], both re-
garding the error value and also the computational cost. It
can be concluded that the data space can be reduced to a
low-dimensional subspace, in most cases, with the proposed
approach.

It should be highlighted the good results obtained with
the proposed adapted Alternation approach, even with per-
centages of missing data of more than 90%.
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