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The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires
automated image analysis tools to track cell shape properties and molecular component locations inside
the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates
accumulated near bacteria boundaries. This particular location makes very ambiguous the correspon-
dence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast
time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bac-
teria modeling which provides several advantages: an easy computation of shape properties (perimeter,
length, thickness, orientation), an improved boundary accuracy in noisy images, and a natural bacteria-
centered coordinate system that permits the intrinsic location of molecular components inside the cell.
Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimizing
an energy function which incorporates bacteria shape constraints. Experimental results on biological
images and comparative evaluation of the performances validate the proposed approach for modeling
cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found
online at http://fluobactracker.inrialpes.fr.
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1. Introduction

One of the fundamental issues addressed by Computational Cell Biology is the characterization of
spatio-temporal dynamics of bacterial cells and their molecular components (Slepchenko, Schaff,
et al.|2002)). The rapid development of techniques for fluorescence imaging in recent years has
opened new research opportunities, that need to cope with the availability of automated image
analysis tools to be fully exploited. In the study of E. Coli aging (Lindner, Madden, et al.|[2008)),
the molecular components of interest are protein aggregates accumulated at the old pole region of
the aging bacterium. These subcellular components, visualized by fluorescence imaging techniques,
need to be reliably associated to their host cells, which are generally visualized with phase-contrast
microscopy. Figure[I]shows a pair of simultaneous frames extracted from a time-lapse phase-contrast
and fluorescence image sequence. The automatic association between aggregates and bacteria re-
quires a very accurate estimation of bacteria boundaries in this case, because aggregates accumulate
near these boundaries (see Figure . In addition to boundary accuracy, a requirement for bacteria
modeling is the possibility to derive accurate cell measurements such as length, width, orientation,
perimeter, etc., that are fundamental characteristics of bacteria (Osborn and Rothfield|2007). For
instance, in bacteria like F. Coli, tracking population variability over time helps to understand
the combinations of effects of genetic and environmental factors on cell phenotype. Finally, having
the possibility to describe the location of subcellular components in an intrinsic cell-centered co-
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ordinate system may be very useful to characterize intracellular dynamics (Coquel, Jacob, et al.|

2013).

Figure 1. E. coli cells visualized through phase-contrast microscopy (left), and their molecular components (in this case
proteine aggregates) visualized through fluorescence microscopy (right). The cell size is approximately between 3 and 5 pm.

Figure 2. E. coli cells visualized through phase-contrast microscopy (left) and protein aggregates visualized through a fluo-
rescence microscopy (right). For a better visualization, here it is shown a saturated version of the original fluorescence image.
Protein aggregates detected by |Dimiccoli, Jacob and Moisan| (2015) on the original fluorescence image, are visualized as white
points on left image. As it can be seen, they are often localized near boundaries making ambiguous the assignment to the host
cell. The cell size is approximately between 3 and 5 um.

This paper aims to provide an algorithm able to extract from an image a complete parametric
description of cigar- or rod-shaped bacteria (e.g., E. coli) that it contains. The underlying math-
ematical representation is a curvilinear skeleton (also called medial axis), which defines, after an
appropriate (non-constant) dilation, the boundary of the bacterium. This model is built by evolv-
ing a first skeleton estimate so as to minimize an energy that promotes a good image fitting while
enforcing the expected properties of the cell shape. In the following, we present the state of the
art related to the use of skeletons for shape characterization and active contours, on which the
proposed model relies.

1.1 Background

Segmentation, the task of partitioning an image into coherent regions, is ill-posed and simple
continuity or homogeneity assumptions cannot cope with the large variability of object appearances.
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In some specific applications for which one expects to see objects from a particular class, prior
knowledge (e.g., clues on appearance or shape) may be exploited to reduce the space of variations.
Such cues have traditionally been used by the Computer Vision community for object recognition,
but their usefulness in segmentation has only more recently reached a common consensus
Leonardis and Schiele|2006). Appearance-based methods rely on features points as Scale-Invariant
Feature Transform (SIFT) but their efficiency has proved to be limited since in general,
object identity is more a function of form that a function of appearance (Siddiqi, Kimia, et al.|
2001} Siddigi and Kimial|[1996, (1995; Leordeanu, Hebert and Sukthankar [2007). Furthermore, in
applications such as living cell imaging, where the intensities are reduced to a minimum to avoid
photodamage and photobleaching, key features may not be sufficiently available.

In the use of shape as an alternative or to reinforce the use of appearance, the skeleton, defined
by Blum as the set of medial loci of the maximal disks contained inside the object,
has received much attention in the literature (Bai and Latecki|2008; Siddiqi, Shokoufandeh, et al.|
11998} Zhu and Yuille [1995). Compared to other shape representation such as edge fragments and
shock graphs, the skeleton offers more flexibility in modeling spatial relationships between parts
and has a good repeatability /distinctiveness trade-off. Although its usefulness for shape matching
and classification on silhouettes has been recognized since the nineties, it is only recently that
skeletons have been exploited for non-rigid object detection (Bai, Wang, et al.|2009; Trinh and|
. In all these methods, the object is first recognized using reference skeletons, and then
the skeleton is used to optimize an initial segmentation.

The idea of optimizing an initial segmentation, under some constraints, is at the core of active
contour (also called snakes) methods, which specifically refine an initial approximate contour ac-
cording to the image data. Early active contour models (Kass, Witkin and Terzopoulos||1988; Osher]
land Sethian||[1988} (Cohen|[1992} (Caselles, Catté, et al.|1993) act by minimizing an energy function
consisting of a data term (including image information), and a regularization term which, in gen-
eral, imposes smoothness constraints on the object shape. According to the nature of the image
information included in the data term, the existing active contour methods can be categorized into
two types: edge-based models and region-based models. Edge-based models use local image infor-
mation —typically, gradient information— (Kass, Witkin and Terzopoulos|1988; |Staib and Duncan|
1992} [Park, Schoepflin and Kim|[2001) to stop the contour evolution on the object boundary, while
region-based approaches (Cohen, Bardinet and Ayache|[1992} [Ivins and Porrill|1995; |Zhu and Yuille
1996; |[Chesnaud, Refregier and Boulet|1999; (Chan and Vese||2001} |Jehan-Besson, Gastaud, et al.
2003} [Zhang, Zhang, et al[[2010)) use global image features inside and outside the contour to con-
trol the evolution. Region-based methods relying on local information are able to segment images
with non-homogeneous intensities (Li, Kao, et al.[2007, |2008). However, as detailed by Wang et al.
(Wang, Li, et al./[2009), such localization property introduces many local minima of the nonconvex
energy functional. Consequently, the result is more dependent on the initialization of the contour.
The initialization issue itself is since long time the object of investigations (Cohen||1991; Cohen
land Cohen![1993; [Kass, Witkin and Terzopoulos|[1988} [Bajcsy and Kovacic|[1989; [Jain, Zhong and
Dubuisson-Jolly|[1998}; [Cohen and Kimmel [1997; [Amini, Weymouth and Jain/[1990; [Geiger, Gupta,
et al.|1995)) and, recently, it has been partially addressed by the formulation of convex energy
functionals (Mao, Liu and Shi [2010; Thieu, Luong, et al.|2011)), for which a single global min-
imum exists. According to the contour parametrization method used to model the smoothness
constraint included in the regularization term, the existing active contour methods can be cate-
gorized into three classes: level sets snakes (Osher and Sethian||1988; |Caselles, Catté, et al.[1993;
Malladi, Sethian and Vemuri/|1995)), point-based snakes (Kass, Witkin and Terzopoulos| 1988;
and Prince||1998)) and parametric snakes (Staib and Duncan||{1992; Brigger, Hoeg and Unser|[2000).
Level sets define the 2D-curve implicitly from an evolving surface in a 3D space. They easily enable
topology changes but are computationally expensive. The smoothness constraints are also implicit,
that is, they are defined on the surface and not on the curve. Point-based snakes correspond to no
parametrization or equivalently to a polygonal line (B-splines of degree zero). Parametric snakes de-
fine the curve between knot points (Brigger, Hoeg and Unser||2000; |Jacob, Blu and Unser|[2004)) via
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a basis decomposition such as B-splines (Marc, Menet and Medioni||1990; |Brigger, Hoeg and Unser
2000) or Fourier exponentials (Staib and Duncan/|{1992)). The overall smoothness is ensured with
curvature and eventually length minimization. When a shape-prior is introduced into point-based
or parametric snakes, a deformable template model is obtained (Jain, Zhong and Dubuisson-Jolly
1998). The prior shape model may be built ad hoc with analytical formulas (Widrow| 1973} Yuille,
Hallinan and Cohen |1992; Jolly, Lakshmanan and Jain|[1996; |Lakshmanan and Grimmer||1996)) or
derived from a training set (Staib and Duncan|/1992; |Cootes, Hill, et al.[[1993; |Cootes, Taylor, et al.
1995; |Cootes and Taylor| [1995; Davatzikos, Tao and Shen|2003)). For analytic models, the shape
deformations are given by the model parameters (e.g., slope for straight lines, radius for circles).
Mostly no probability distribution is needed. Training methods, usually called active shape mod-
els (Staib and Duncan|1992; |Cootes and Taylor||1995; Davatzikos, Tao and Shen [2003), are more
flexible since they can be applied easily to any reproducible shape. However, they require to define
an average shape and deformation models, which could bias the result if, for example, the training
set is too small.

1.2 Active skeleton

Instead of matching a given bacteria template to a previously computed edge map as in classical
recognition problems, or evolving an initial contour toward the object outline as in classical active-
contour methods, we propose an active skeleton model which evolves initial skeletal polygonal
lines toward the true medial axes of the bacteria. The advantage of the proposed approach for
segmentation is that it allows to introduce strong shape constraints adapted to the bacteria class
(here, cigar-shaped bacteria), which improves the accuracy of the boundary location even in very
noised images.

The paper is organized as follows. In Section [2| we describe the skeletal model we are consid-
ering, while Section details the active skeleton initiation and the evolution process based on a
variational (energy minimization) formulation. Section [3{ provides results and comparisons to other
segmentation methods.

2. Method

2.1 Skeleton model

We model a digital image acquired by a contrast-phase microscopy as a real valued discrete function
u:QC 22 = R, where Q = [0, N] x [0, M] is a rectangle.

Definition 1. A ball B(x,r) centered at x and having radius r is a maximal disk of a shape F if
B(z,r) C F and VB(2',r") C F,B(x',7") # B(x,r) = B(x,r) ¢ B(z',r')

We denote the maximal disks of a shape by the symbol B, (z,r).

Definition 2. The morphological skeleton S € Q of a bacterium B on the image u is the set of
mazximal disks centers of B: S = {x|3r > 0: B(x,r) = Bp,(z,7)}.

We represent a skeleton & by an ordered set of n points with associated radius value: S =
{(Z%7i) Yieg1.m), where @ = (x4,;) € Q represents the center of the maximal disk of radius r;.
The skeleton is hence composed of n — 1 segments s; = [£}, x;11], with j € [1,...,n — 1]. Given
the skeleton S, the bacterium is built up by dilating the centers of the maximal disks according
to their associated radius, which is linearly interpolated inside each segment. Let s; = [2,2;31] a
segment of the skeleton, then for each point 7} of s;, the corresponding radius is computed as a
linear interpolation of r; and 7j41: 7(A) = (1 — A\)rj + Arjpq, with 0 < A < 1.

Given an initial skeleton, the optimization of its location strongly depends on the underlying
segment dilations and in turn to the definition of distance used for the dilation. In the following,
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we define two distance models and, according to them, we derive the expression of the dilation
models.

2.2 Distance models

In this section, we first define a simplified model of distance of a point to a segment, say d., and
then we define an accurate orientation based distance, say d,, that takes the radii difference into
account.

Definition 3. Simplified distance of a point to a segment. Let §j = (z,y) €  be any point
of the image and s; = [T;, Ziy1] € S any segment of the skeleton. Denoting by py the projection of
y on the line through &; and Ziy1, p1 can be written as py = (1 — A\1)Z; + M\ &1, with Ay € R. The
simplified Fuclidean-based distance of a point ¢ to a segment s; is defined as follows.

g =zl A <0
de(y,8:) = || — Zigal] A >1 (2.1)
|7 =mll A €lo]
where || - || is the Euclidean norm. In Figl3| (up) it can be observed that the distance coincides

with the Euclidean distance between two points only if the orthogonal projection of  on the line
through #; and #;11 lies on the segment s;.
The value of A\ can be computed from the scalar product < ¢ — @, Tiy1 — & > Ay =

(xfxi)AxiLt(yfyi)Ayi, where Ax; = i1 — 25 Ay = Yis1 — ¥, and Ly = v/ Az + Ay? (the

length of 1segment s;). If the orthogonal projection pj of ¥ on s; lies on s;, then the distance
of i/ to s; coincides to the distance of  to pj. In this case, such a distance can be written as
d(y,s;) = \/(1: —x; — MAz)? + (y — yi — M Ay;)?. By introducing A.:

0 A <0

=41 M2>1 -
AL = (I—xi)Axi;z(y_yi)Ayi 0<A <1

i

the simplified distance from any point to a segment can be written as: do(Z,s;) =
V(@ =z — AeAzi)2 + (y — yi — AeAyi)?.

Definition 4. Orientation-based distance of a point to a segment.

Let § € Q be any point of the image and s; = [Z;, Tiy1] € S any segment of the skeleton. Let
Ar; = |riy1—ri| be the difference between the radii value associated to the extremities of the segment
s; and L; the segment length.

e Case 1: L; > Ar;: let t; be the common tangent to the circles with centers (&;,Z;y+1) and
radii (r;,7i+1) respectively, lying on the same half-plane than § compared to t;. Let  be the
orthogonal projection of i over t;, and pa the intersection of the line through ¥; and Ty
with the line through § and y. Writing pa as po = (1 — A2)@; + XaZiy1, with Ao € R, the
orientation-based distance d, is defined as follows: (see figure[3 (down)):

| —Zill A2 <0
do(if,8:) = § Il — Zig1l] A2 >1
|7 —pa|| A2 €]0,1]

where || - || is the euclidean norm.
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e Case 2: L; < Ar;:
N B 71 | R iy S
Aol 51) = { |G — Ziall i <riga

Under the assumption L; > Ary, po = (1 — Xo)@; + AoZiy1 with Ay € R. Let A such that
P2 —P1 = AM(@iy+1 — ;). Then one has simply to replace A; with A2 = A; + A in the equations derived
for the simplified distance.

y

Figure 3. Euclidean distance de(y, s;) (up) and orientation-based distance do(y, s;) (down) of a point y to a skeletal segment
;.

To explicit A, one can compute the angle 6 between ¢; and s; according to sin(6) = AL—T It comes

that

i

de
Liy/L? — Ar?

Note again that A is an algebraic value. To deal with the case L; < Ar; one can extend the definition
of A, for example in the following manner:

A= Ar;. (2.3)

1-— )\1 ATZ‘ Z Li,
X={ M —Ar>L, (2.4)

A=—2Y9 _ Ar, otherwise.

Now one can compute in any case Ao = A\; + . Because of the restrictions of Ag, the definition can
be extended as:

0 )\2 < O)
Ao =A1+A A €]0,1],



October 27, 2015

Computer Methods in Biomechanics and Biomedical Engineering gCMBguide

Finally, the general expression of d, is as follows:

do(Z, s;) = \/(x — i — MNoAZ)? 4+ (y — yi — AAy;)?. (2.6)

2.3 Dilation models

Before introducing the dilations models derived from the above definitions of distance, we define
the distance of a point to as skeleton.

Definition 5. Distance of a point to a skeleton. Let S = {(Z;,7i)}i=1,..n € Q a skeleton on
the image u : 0 — R and y a point of €.

d(7,8) = min {d(g, si)}

i=1,....n—1

Definition 6. Dilation model derived from the simplified distance of a point to a seg-

ment. Let S = {(Z;,71) }ic(1.ny a skeleton and s; = [T, Zj41] a segment of S. For any point §j € Q,

let s; = argmin d.(y, sj) the segment that has minimal simplified distance from y. The simplified
jE(l,...,n]

dilation of S is given by the set of points such that their simplified distance to s; is inside the

mazximal disks with interpolated radius: D(S) = {Z|de(Z,s;) < (1 — Ae)ri + Aerit1} where A is

defined in equation

Definition 7. Dilation model derived from orientation-based distance of a point to a
segment. Let S = {(¥,71) }ic(1.m) @ skeleton and sj = [T}, 7j11] the j —th segment of S. For any
point § € 2, let s; = argmin dy(y, sj). The orientation-based dilation of S is:
]6[1,771]
D(S) = {4ldo(¥, si) < (1 = No)ri + AoTit1} where N, is defined in equation .

Figure 4. The dilation D, obtained by using the orientation-based distance d, is represented by a full red line. The dilation
D, obtained by using the simplified distance d. differs by D, only in the region delimited by the two dashed vertical lines,
where it is represented by a blue line. However, the difference between the two dilations is very small also for large difference
radii.

Denoting by D, and D, the dilations obtained by using the distances d, and d. respectively, as it
can be observed on the cartoon example shown in Fig. E

do(§,8) = de(§,8)1 /1 = (§2)2 = ri(Ae)
in the region delimited by the vertical dashed green lines, and D, ~ D, elsewhere. As it can
be appreciated, the dilated models differ slightly even if the difference between the radii is large.
Since bacteria width has low variations, radii difference values are generally small compared to

the segment length. Hence, the difference between the dilation models would be not significant.



October 27, 2015

Computer Methods in Biomechanics and Biomedical Engineering gCMBguide

Additionally, when using the simplified distance, the corresponding dilation contains less derivative
terms and discontinuities, and consequently the variational optimization based on it would be
computationally faster and more stable numerically. Hereafter, to simplify the notations, we will
use the symbol d to denote either d. or d,, and r to denote either r;(A.) or 7;(A\,) according to the
desired distance model.

2.3.0.1 General remarks. Although the distances d. and d, are continuous, both dilation outlines
are made up of arc circles and straight lines. Note that the scale parameter of the outline is contained
in the radius values: big or small outlines may be described with the same skeleton. Furthermore,
some measures of interest inherent to the bacteria class are immediate with this representation:
orientation, thickness, perimeter and length.

2.4 Active skeletons

2.4.1 Skeleton initialization

The optimization process relies on the availability of an initial skeleton for each bacterium. In
this work, we derived it from the closed contours obtained by applying the bacteria segmentation
method proposed in |Primet, Demarez, et al| (2008). After computing the morphological skeleton
through the use of morphological operators, a linear vectorization is performed by using an iter-
ative method inspired to |[Wall and Danielsson (1984)); |[Potier and Vercken| (1994) but based on
angle variations. The vectorization starts from the farthest point from the gravity center of the
skeleton. To take into account the presence of possible holes, a spline-interpolation is used to build
a continuous skeletal line, which is finally sampled uniformly according to the wished accuracy of
the skeleton.

2.4.2 Skeleton optimization

Given an image u and the initial skeleton approximations {S?,i = 1,...,n}, the aim of the active
skeleton model is to find the skeletons {S’Z,’L = 1,...,n} corresponding to the true medial axis
of bacteria by evolving the initial skeletons. This is achieved by minimizing an energy function
made up of two terms: a data-fidelity term and a regularity term that incorporates bacteria shape
constraints. To handle the specific issue of several non-ovelapping objects, we propose an additional
repulsion energy term.

Pixel selection function

10
0.9
0.8—_
0.77

0.6

fps(t)

0.5
0.4—_
0.3—_
0.27]

0.1

0.0 T T T T T
-15 -l0 -0.5 0.0 0.5 1.0 15

t

Figure 5. Pixel selection function used to express the spatial condition. For pixels inside the closed contours the signed
difference r(z,S) — d(z, S) has an absolute value less than 1, more than 1 otherwise. Therefore, the function being symmetric,
we have that: fps(d — 1) + fps(r —d) = 1.
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2.4.2.1 Data term. Images captured by a phase-contrast microscopy are characterized by a dif-
ference of contrast between the foreground specimen and the background. Therefore, the data term
has to be small when the difference of the contrast between foreground and background is large.
Since time-lapse imaging objects contours may have large and slow variations (that is, strong low-
frequency components), the use of a local neighborhood allows us to have a reasonable local model
of the background. Typically, the data term corresponds to the difference between the average in-
tensity inside the closed contour, and the average intensity in a ring surrounding it that corresponds
to a high contrast between a bacterium and its local background. Since the objective function to
be minimized has to be differentiable, the spatial condition is expressed through a smooth pixel
selection function fps.

1+sir21(§t) te [_1’ 1]
fos() =90 t<-1 (2.7)
1 t>1

The data term FEy is expressed as the difference between the internal energy F;, and the external
energy F,,:, which are defined as follows

fps —d(z,5)]fe(x)
Fn = 2 L5~ .50 N

- fpsld(z,8) = r(x,8)] fe(x) 2.8
Eout = Z Ipsld(z,S) — r(z,S)]

zel|d(z,S)<r(z,S)+p

where f. is an increasing smooth contrast function allowing to adapt the imaging contrast to the
data, p is the width of the ring surrounding the closed contours and, since x € s; C S can be written
as x = (1 — Ny + Aziq1, r(2,S8) = (1 — A)r; + Aripq. It is easy to see that fp[r(z,S) — d(z,S)]
selects pixels inside the closed contour, whereas f,s[d(x,S) — r(z,S)] selects outside pixels.

2.4.2.2  Regularity terms. Two regularity assumptions are embedded into the energy function by
imposing a smooth segment angle variation and radii homogeneity.

Most of the bacteria are weakly bent, therefore the skeleton curvature has to be as small as pos-
sible. The discrete curvature at point x; is measured by the angle of the arc at x;, that Corresponds

o —

= . > - . . det(Z; —; i i
to the angle oy = &; — Z;_1, Fi+1 — &;. Numerically, we compute sin(«a;) = Hea:(fx x1|||1|;6 : me) The

corresponding curvature-related regularization term is:

i=n—1

E.= ) sin’(a) (2.9)

=2

Since the bacterium thickness is quite homogeneous, the difference between the radii of the
skeleton points, {r;,i = 1,...,n}, should be small. We consider the median radius value defined as

Trmed = me[dia]n(ri). The corresponding energy term is
€ll.n

=n

Eh = Z(T’L - 7amed)Q (210)

i=1

2.4.2.8 Repulsion term. An additional repulsion term may be added when dealing with bacteria
colonies. Denoting by d(z;,Si) the distance between a point x; € S; and the skeleton Sk, the

corresponding distance between z; and the bacteria is ¢ = d(z;,Sg) — r; — r¥, where r¥ is the
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interpolated radius from S; when computing the distance d(x;, Sk). Since ¢ < 0 has to be avoided,
by defining a repulsion function f¢p(t) minimal when ¢ > 0, the repulsion energy term E, can be
written as:

E,=)Y" Y frpld(xi,S) —ri —1F) (2.11)

k LL‘LESL#Sk

2.4.2.4 Qwerall energy. The global energy to minimize combines all above energy terms: E =
aEy + bE. 4+ cE)y + dE,, where a,b,c,d are positive weights. The energy minimization requires
to compute derivatives according to points coordinates and radii. All derivatives are given in
Appendix.

3. Results

The parameters defined in last section - a, b, ¢, d, p, the contrast function f. and the repulsion
funcion f,¢, - were set once for all when correctly calibrated on our dataset. The experimental
values were: a = 10, b =1, ¢ = 0.01, d = 0.1, thickness p = 2 pixels. The contrast function we
used is f.(z) = sin®® I(z), which enhances the contrast between inside and outside mean values of
bacteria. We have chosen a quadratic repulsion function to penalize bigger overlaps:

(t—AZift<A

0 otherwise (3.1)

Frntt) = {

with A = 0.3 pixels. The algorithm was implemented in C with the MegaWave2 library H

3.1 Method validation

Wi

X

Figure 6. The value u(z) of the pixel = is computed as a function of the distance of the pixel z from the skeletal segment s;
(dashed line).

In this section, we compare our active skeleton model to the active contour model by using the
Haussdorff distance to a synthetically generated ground truth on a set of synthetically generated
images. Since both methods require a rough initialization we drew it by hand. To generate the
ground truth, as well as the test data, we started by considering a bacterial colony phase-contrast
image. First, we computed the bacteria skeletons by applying the proposed method and then, by
relying on the skeletons obtained, we recovered a synthetic image by computing each pixel value

IThe software in C will be made publicly available with the publication of the article

10
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u(x) as

u(z) = f <n]1f dz,s;) > (3.2)

ri(z)

where d(z, s;) is the distance of the pixel x to the segment s; of a skeleton S having as extremities
the pixels z; and x;41 with associated radii r; and ;41 respectively (see Fig. @ f is the Gauss
error function and r;j(z) is the interpolated radium computed on the projection of z on s; (2’ in

Fig. [6). The interpolated radium value is computed as: r;(z) = %ﬁg]“ with «a, 8 > 0.

Figure 7. Synthetic image, whose noised versions constitute the test data used for validation.

As test data, we used noised versions of the so generated synthetic image (see Figure|7]), obtained
by adding a Gaussian white noise with increasing standard deviations. As ground truth, we used
the boundaries from which the synthetic image has been generated. This is justified by the fact
that, on the unnoised synthetic image, the average Haussdorff distances to ground truth of both
methods are almost the same and of less than 1/10 of pixel (see Fig. [8)) for a standard deviation
of noise equal to zero.

Fig. [§| shows the Haussdorff distance to the ground truth of the active skeleton and the active
contour methods. Since the active contour model assumes that the object contours are smooth, we
previously smoothed the image by using a Gaussian kernel of standard deviation o; = 0.5 before
applying this method. As it is shown in Figld] for relatively small values of the standard deviation
of the Gaussian smoothing kernel, the performances of the active contour method slightly improves,
since the "edgness” of curves is enhanced by smoothing. However, there is an upper bound to the
level of smoothing that can be applied which is related to the scale of the image structure we are
looking for. The proposed active skeleton model allows to enforce smoothness without becoming
excessively sensitive to noise by integrating an a priori on the shape which is itself smooth (rod or
cigar-shape). It is worth to remark that on real images, the image contrast across cells boundaries
is not constant as it is for our data test images. This greatly deteriorates the performances of the
active contour method as it can be appreciated in Fig. This Fig. shows the interest of the
proposed method in determining the association cell-aggregate. As detailed in section [I], solving
this association requires accurate boundary estimation since fluorescent molecular components are
usually concentrated at the poles of bacteria.
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Figure 8. Haussdorff distance of the active contour method (in blue) versus the Haussdorff distance of the active skeleton
method (in red) as a function of the standard deviation of the Gaussian noise. As it can be observed, the active contour method

is much more sensitive to the noise.
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Figure 9. Haussdorff distance to the ground truth of the active contour method for increasing levels of smoothness.

3.2 Application to the study of Escherichia Coli aging

In Escherichia coli (E. coli) bacteria, aging-related protein aggregates accumulate at the old pole
region of the aging bacterium. Studying the dynamics of these molecular components inside the cells
requires automatic tools for 1) detecting protein aggregates in fluorescence images, 2) computing
bacteria boundaries in the corresponding contrast-phase image, 3) assigning each protein aggregate
to one cell, 4) expressing the coordinates of the protein aggregates in the basis composed of the cell
long (the median line) and short axes (along the skeleton width). We used the method in Dimiccoli,
Jacob and Moisan| (2015) to detect protein aggregates in fluorescence images, the method Primet,
Demarez, et al.| (2008)) for segmenting the cells in contrast-phase images, and the active skeleton
method to refine bacteria boundaries prior to the affiliation of protein aggregates to cells. Then
the final skeletons were used in two different manners. Firstly, to localize the protein aggregates
in the skeletal short and long axes referential. Then, the simple shape of the skeleton was used to
estimate the total cell width and length as that of the respective skeleton.

As a convention, we refer below to the aggregate coordinate along the long axis as the x-coordinate
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Figure 10. (Left) Cells boundaries obtained by applying the snakes method. (Right) Cells boundaries obtained by applying
the active skeleton method. Both used the method |Primet, Demarez, et al.| (2008) as initialization. Detected protein aggregates
are visualized as white points. The accuracy of the active skeleton method allows a correct assignment of protein aggregates to
cells.
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Figure 11. (a) The z— and y— coordinates of protein aggregate inside the cell correspond to the long and short axis respectively.
(b) Histogram of the z—component of 1,644 images associated to initial trajectories. To take into account the high variability
of cell lengths, the x-component was rescaled by division by the cell half-length, so that the cell poles are located at locations
-1.0 and 1.0 respectively. Image adapted from the biological study |Coquel, Jacob, et al.| (2013])

and that along the short axis as the y-coordinate (see Fig. (a)). In Fig. (b) is shown the
histogram of the x—component computed over 1,644 images. It can be seen that most aggregates
accumulate along the center, that undergoes division, and the poles of bacteria. Fig. [12|schematizes
the increase of the cell half-length during growth that dominates the movement along the x-axis,
also showing the time evolution of the mean displacement.

4. Discussion
This study has covered a number of aspects of the problem of investigating the dynamics of bac-
teria cells and their molecular components. Overall the work reported produced numerical values

for validation results and experimental results, and the discussion will be organised to highlight
different parts of the process and to analyse the computational complexity. We will end this sec-
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Figure 12. Evolution mean displacement along the z— (red) and y— axis (black). The movement along the x-axis dominated
the cell half-length growth. Image adapted from the biological study |Coquel, Jacob, et al.| (2013).

tion by discussing the range of applicability of the proposed method. An example of initialization
is shown on figure (a): we choose a default number of four points per bacteria (and more if
the spline interpolation is too far from the skeleton). Even if the morphological skeleton provides
radii values at each skeleton point, we used a constant value corresponding to the minimal contact
radius instead (see blue outlines). In this way, the influence of the initial segmentation obtained
by applying the method proposed by Primet el al. |Primet, Demarez, et al. (2008) is minimized.
The results correspond to what is expected: the different final skeletons are inside the bacteria
and the implicit outlines demarcate dark areas from light outsides. Figures [13[ (b) and [13| (c) show
final states from initial positions given in figure |13 (a). They highlight the interest of the repulsion
energy F,. The second segmentation seems fully coherent with the initial image.

From a biological point of view the segmented bacteria are too thin since they should be in
contact according to the experimental conditions. Of course this is not the case for the above
segmentation (e.g on figure (13| (¢)) because we consider that there are bright pixels outside: the
bright pixels isolate the bacteria from each other. For this experimental reason, the bacteria have to
be enlarged in some way. We propose two strategies to fix this problem. The first solution consists
in adding a positive coeflicient oy, < 1 in the expression Ey = a;nFin — Eout. This enables one
to enlarge the bacteria according to the luminosity transitions as shown on figure 13| (d). Though
theoretically this is a good solution, the result is that different bacteria are more ore less dilated
according to their outline intensity. Moreover, when taking low values of «;, (very big bacteria)
the active skeleton may leak in the background. Another repulsion term from the bottom could
be introduced but it supposes to set an additional arbitrary parameter: the minimal distance of
bacteria to the bottom Ag. Then the result is biased like on red dots in Fig. (e). For the
biological study we prefer another solution. We consider that bacteria are bigger than they appear
on the image. Then the optimization is done by considering bigger bacteria in the repulsion energy
term FE, (interaction between real bacteria) while having a thin eroded representation of bacteria
for the data confidence energy Ej;. In other words, we assume that an eroded representation of the
bacteria may fit the image. Let us call h the radius difference between real and thin bacteria. To
adapt consequently the repulsion term E,., A in equation is replaced by A + h to prevent
the overlapping of the physical bacteria. The optimization process produces thin bacteria. Then to
obtain the physical bacteria from their thin image version, a homogeneous dilation is performed
after the optimization. In practice, it simply consists in adding A to all r; values. Figure ()
presents a h = 1.5 pixels thickness difference.

The computational complexity of the proposed method depends on three parameters: the num-
ber of active skeletons, the number of skeletal points used to model each of them and the image
resolution. More precisely, for one step of the gradient descent and for a single skeleton, the com-
plexity of deriving the energy term is O(M N), where N is the number of skeleton points and M
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(f)

Figure 13. (a) Initial state of active skeletons (green) made up of at least 4 points with the corresponding implicit outlines
(blue). (b) Final state of active skeletons (green) and corresponding implicit outlines (blue) without the repulsion energy E;. (c)
Final state of active skeletons (green) and corresponding implicit outlines (blue) with the repulsion energy E;. The red skeleton
was stopped by FE,. (d) Final state of active skeletons (green) and corresponding implicit outlines (blue) with a thickness
parameter oy, = 0.8, still with the repulsion energy E,. (e) Final state of active skeletons with a thickness parameter a;, = 0.6
and an additional bottom repulsion set to Aa = 2 pixels (effective on the red skeleton dots). (f) Final state of active skeletons
with a repulsion of A + h = 3.3 pixels and a uniform dilation of A = 1.5 pixels.

is the number of pixels within a box surrounding the skeleton dilation. For K skeletons without
repulsion energy, the complexity is O(K M N). When considering the repulsion energy, it becomes
O(KMN)+ O(K?N?), where the second term corresponds to inter-bacteria distances. Since accu-
rate segmentation of bacteria can be achieved with a few skeletal points, the algorithm complexity
will mainly depend on the image resolution and on the number of bacteria in this particular ap-
plication.

We conclude by remarking that although this work was tailored to cigar- or rod-shaped bacteria,
it would work as well for any kind of curved ovoid shape. For non-ovoid shapes, it could be adapted
by changing the dilation model. For more complicated ramified shapes, the skeleton model itself
should be adapted. The utility spectra of the proposed method is not restricted to bacteria, but to
all cases in which a precise segmentation of cigar- or rod-shaped object is needed and the image
quality is poor. For instance it could be very useful for segmenting images of insects in the study
of insect populations, or for the segmentation and recognition of tumors and cigar- or rod-shaped
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cells.

5. Conclusions

This paper has proposed an active skeleton approach for bacteria modeling, that presents sev-
eral advantages for the study of bacteria shape properties and the dynamics of their molecular
components. Indeed, the long and short axis of the skeleton define a reference system centered
to the bacterium, which is crucial to study the dynamics of subcellular components inside the
cell. In addition, the computation of shape properties such as local orientation, thickness, length
and perimeter from the skeleton representation is straightforward. Finally, bacteria boundaries are
computed accurately even in very noised images by introducing implicitly smooth shape priors
into the segmentation process. The improved accuracy is important to reduce the ambiguity of the
association molecule/cell in time-lapse fluorescence and phase-contrast imaging.

The proposed model has been successfully used to study the dynamic of protein aggregates in
E. Coli |Coquel, Jacob, et al. (2013). Localization of proteins to specific positions inside bacte-
ria is crucial to several physiological processes, including chromosome organization, chemotaxis
or cell division and aging. The Image-J plugin of the proposed method can be found online at
http://fluobactracker.inrialpes. fr.

Further improvements could be discussed and developed according to the kind of data and to
the imaging task to deal with. For example, the fidelity term of the energy functional could be
chosen differently from the literature on data energy terms for snakes. Ad-hoc initializations could
be derived from morphological gray-level skeletons and segment extraction. Finally, the skeleton
model could handle more complex shapes, with more branches and angle constraints, and eventually
with other distance definitions relaxing the circular extremity of each branch.
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