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Abstract— Person re-identification has received special atten-
tion by the human analysis community in the last few years.
To address the challenges in this field, many researchers have
proposed different strategies, which basically exploit either
cross-view invariant features or cross-view robust metrics. In
this work we propose to combine different feature representa-
tions through ranking aggregation. Spatial information, which
potentially benefits the person matching, is represented using
a 2D body model, from which color and texture information
are extracted and combined. We also consider contextual
information (background and foreground data), automatically
extracted via Deep Decompositional Network, and the usage of
Convolutional Neural Network (CNN) features. To describe the
matching between images we use the polynomial feature map,
also taking into account local and global information. Finally,
the Stuart ranking aggregation method is employed to combine
complementary ranking lists obtained from different feature
representations. Experimental results demonstrated that we
improve the state-of-the-art on VIPeR and PRID450s datasets,
achieving 58.77% and 71.56% on top-1 rank recognition
rate, respectively, as well as obtaining competitive results on
CUHK01 dataset.

I. INTRODUCTION

Person re-identification is the task of assigning the same
identifier to all instances of a particular individual captured
in a series of images or videos, even after the occurrence of
significant gaps over time or space. It has a wide range of
applications, but most of them are focused on surveillance
and forensic systems. Even though the proposed models and
reported results in this field have considerably advanced
in recent years [1], [2], [3], this task still presents main
open challenges, mainly due to the influence of numerous
real-world factors such as illumination problems, occlusions,
camera settings, as well as many factors associated with
the dynamics of the human being, like the great variety
of appearance features, pose variations and strong visual
similarity between different people. These difficulties are
often compounded by low resolution images or poor quality
video feeds with large amounts of unrelated information,
making re-identification even harder.

As related in [4], given a query person image, in order
to find the correct matches among a large set of candidate
images captured by different cameras, two crucial problems
have to be addressed. First, good image features are required
to represent both the query and the gallery images. Second,
suitable distance metrics are indispensable to determine

whether a gallery image contains the same individual as the
query image. An ideal measurement is a matching rule that
yields higher matching score for the image pairs belonging to
the same person than the pairs belonging to different persons.
Chen et al. [5] also highlighted that similarity measurements
which are learned (e.g., [6], [7]) from training samples
generally enjoy better accuracy performance than learning
free methods [8].

In order to address the re-identification problem, existing
methods exploit either feature representation [9], [10], [11]
or metric learning [12], [7]. In feature representation, robust
and discriminative features are constructed such that they can
be used to describe the appearance of the same individual
across different camera views under various conditions [13],
whereas distance metric learning methods attempt to learn a
metric in the space defined by image features that keep fea-
tures coming from same class closer, while, the features from
different classes are farther apart [2]. Recently, Convolutional
Neural Networks (CNN) have been adopted in person re-
identification [14], [9], providing a powerful and adaptive
tool to handle computer vision problems without excessive
usage of handcrafted image features. However, as mentioned
in the work of Wu et al. [9], hand-crafted concatenation
of different appearance features sometimes would be more
distinctive and reliable, due to significant changes in view
angle, lighting, background clutter and occlusion.

In this work we exploit the best of different state-of-the-art
models to advance the field of person re-identification. The
proposed model is inspired by the work of Chen et al. [5],
which enforces similarity learning with spatial constraints,
and achieved (up to now) the best score (i.e., top rank recog-
nition rate) on VIPeR [15] dataset (which is one of the most
challenging datasets employed in person re-identification). In
this paper, by combining new and complementary features
within [5], followed by a ranking aggregation strategy [16],
we advance the state-of-the-art in person re-identification on
two public datasets, VIPeR and PRID450s [17] (by 8.89%
and 6.9%, respectively) as well as achieve competitive results
on CUHK01 [18] dataset.

The new and complementary adopted features can be
briefly enumerated as follows: (i) Salient Color Names based
Color Descriptor (SCNCD) [6] (to encode color information)
combined with Histogram of Oriented Gradients (HOG) [19]
and Scale Invariant Local Ternary Patterns (SILTP) [20] (to
encode texture information); (ii) SCNCD combined with978-1-5090-4023-0/17/$31.00 c©2017 IEEE



contextual information (background and foreground data),
automatically extracted via Deep Decompositional Network
(DDN) [21]; (iii) Convolutional Neural Network (CNN)
features constrained by hand-crafted color histograms [9]
and combined with Local Maximal Occurrence (LOMO) [22]
features. A quantitative analysis regarding the effectiveness
of each complementary feature is presented on Sec. IV-D. In
particular, experimental results obtained when only the pro-
posed SCNCD based descriptor was employed, demonstrated
that the inclusion of context information within SCNCD
improves the top-1 rank recognition performance by 11.68%,
10.49% and 12.71%, on VIPeR, PRID450s and CUHK01
dataset, respectively. Compared to the baseline features [5],
the usage of Deep features (iii) combined with SCNCD (i)
and context information (ii), improved the top-1 rank recog-
nition performance by 6.48%, 13.0% and 19.07%, on the
same datasets. The proposed new features demonstrated to
complement each other, being very powerful when combined
with a ranking aggregation strategy.

The rest of the paper is organized as follows: Sec-
tion II presents the state-of-the-art concerning person re-
identification. The proposed model is described in Sec-
tion III, and experimental results are provided in Section IV.
Finally, conclusions are given in Section V.

II. RELATED WORK

Existing research on person re-identification has concen-
trated either on the development on sophisticated and robust
features to describe the visual appearance of a person under
significant visual variabilities or on the development of new
learning distance metrics. In this section we present the
state-of-the-art on person re-identification, briefly describing
the works that achieved the best recognition rates on three
broadly employed public datasets, VIPeR, PRID450s and
CUHK01, without focusing on the standard taxonomy (i.e.,
feature representation or metric learning).

As related in the work of Paisitkriangkrai et al. [13],
one simple approach to exploit multiple visual features is
to build an ensemble of distance functions, in which each
distance function is learned using a single feature and the
final distance is calculated from a weighted sum of these
distance functions. However, the usage of predetermined
weights is undesirable as highly discriminative features in
one environment might become irrelevant in another one. In
their work, a model to learn weights of these distance func-
tions by optimizing the relative distance or by maximizing
the average rank-k recognition rate is proposed.

Prates and Schwartz [16] presented a Color-based Rank-
ing Aggregation (CBRA) method, which explores different
feature representations to obtain complementary ranking
lists, and combine them in order to improve person re-
identification. In their work, the KISSME [12] metric learn-
ing was adopted and different strategies for ranking aggre-
gation, based on the Stuart rank aggregation method [23],
were proposed.

In order to consider spatial information, a common usage
in person re-identification is to divide the person image

in few regions/stripes and concatenate dense local features,
extracted for each region, to implicitly encode the spatial
layout of the person. Chen et al. [5] proposed a model
for person re-identification that combines spatial constraints
and the recently proposed polynomial feature map [7] into
a unified framework. They consider that breaking down
the variability of global appearance regarding the spatial
distribution potentially benefits person matching (i.e., the
region containing the head of a person should be compared
with the region containing the head rather than the region
containing the feet). Authors mention that enforcing the
matching within corresponding regions can effectively reduce
the risk of mismatching and become more robust to partial
occlusions. In addition, their framework can benefit from the
complementarity of global and local similarities.

In relation to domain adaptation in machine learning, Chen
et al. [10] proposed a schema called Mirror Representation
to address the view-specific feature distortion problem in
person re-identification. It embeds the view-specific feature
transformation and enables alignment of the feature distribu-
tions across disjoint views for the same person. Zhang and
collaborators [24] argue that most existing approaches focus
on learning a fixed distance metric for all instance pairs,
while ignoring the individuality of each person. They formu-
late person re-identification as an imbalanced classification
problem and learn a classifier specifically for each pedestrian
such that the matching model is highly tuned to the individual
appearance. To investigate the intrinsic relationship between
the feature space and classifier space, authors proposed the
Least Square Semi-Coupled Dictionary Learning (LSSCDL)
algorithm in order to learn a dictionary pair and mapping
function simultaneously.

Considering the recently proposed CNN based methods
for person re-identification, in [9] a deep Feature Fusion
Network (FFN) is proposed in order to use hand-crafted
features to regularize CNN process so as to make the
convolutional neural network extract features complementary
to hand-crafted ones. As mentioned by the authors, different
to other deep methods for person re-identification (e.g., [14],
[25]) which are based on pairwise input, they can directly
extract deep features on single images, being able to be
learnt by any conventional classifier. Xiao et al. [11] pre-
sented a pipeline for learning deep feature representations
from multiple domains with CNN. Authors argue that when
training a CNN with data from all domains, some neurons
learn representations shared across several domains, while
some others are effective only for a specific one. Based on
this observation they proposed a Domain Guided Dropout
algorithm (a method of muting non-related neurons for each
domain). Cheng et al. [4] presented a multi-channel parts-
based CNN model under the triplet framework to jointly
learn both the global full-body and local body-parts features
of the input persons.

Although a large number of existing algorithms have
exploited state-of-the-art visual features, advanced metric
learning algorithms, domain adaptation based models or
even CNN based ones, state-of-the-art results on commonly



evaluated person re-identification benchmarks is still far
from the accuracy performance needed for most real-world
surveillance applications [13].

III. PROPOSED MODEL

In this section, we propose to exploit different feature
representations1, through ranking aggregation, to advance the
state-of-the-art in person re-identification. In the proposed
model, each image is represented in different ways, which
include hand-crafted descriptors (based on color and texture
cues) and deep features (extracted via CNN). To describe
the matching between a probe image and a gallery set, a
similarity learning metric built on the polynomial feature
map [7] is adopted, also taking into account spatial (lo-
cal and global) information. As each image has different
descriptors, different similarities are computed, according
to each representation. This way, for each probe image
and gallery set, different rank lists are generated, each one
assigned to each feature representation. The final rank list is
obtained through ranking aggregation, which combines such
complementary ranking lists. An overview of the proposed
model is illustrated in Fig. 1.

Next, we briefly revisit the polynomial feature map and
the spatially constrained techniques [5]2, as they are the basis
of the proposed model. In a second stage, we describe the
proposed complementary features. Finally, we describe the
adopted ranking aggregation strategy, which exploits such
complementary information.

A. Polynomial Feature Map

In order to measure the similarity between image descrip-
tors xa,xb ∈ Rd×1, we learn the similarity function as:

f(xa,xb) = 〈φ(xa,xb),W〉F , (1)

where 〈·, ·〉F is the Frobenius inner product. To take ad-
vantage of both Mahalanobis distance and bilinear similarity
metric, we decompose f(xa,xb) as follows:

f(xa,xb) = 〈φM (xa,xb),WM 〉F + 〈φB(xa,xb),WB〉F .
(2)

The part 〈φM (xa,xb),WM 〉F = (xa − xb)
>WM (xa −

xb) is connected to the Mahalanobis distance. The part
〈φB(xa,xb),WB〉F = x>a WBxb + x>b WBxa corresponds
to bilinear similarity. Both parts ensure the effectiveness of
f(xa,xb). The dimensionality of the feature map is reduced
by means PCA for xa and xb before its generation3.

1An evaluation about different color spaces and their combinations for
person re-identification can be found in [26].

2Implementation provided by the authors, available at http://
dapengchen.com/files/SCSP/SCSP_page.html

3A detailed explanation about how WM and WB are learned, using the
ADMM optimization algorithm, can be found in [5].

B. Spatially Constrained Similarity Function

1) Regional feature map: the input image is partitioned
into R non-overlap horizontal stripe regions. Each region is
divided into a collection of overlapped patches, from which
we extract color and texture histograms. The extracted his-
tograms belonging to a same stripe region are concatenated
together. After that, PCA is applied to reduce the dimension-
ality and to obtain the region descriptor xr for the r-th stripe,
where r ∈ {1, ..., R}. A stripe region r can be described
by C visual cues {xr,1, ...,xr,c, ...,xr,C}, thus xa and xb

accordingly form C polynomial feature maps for the r-th
region, i.e., {φr,1(xa,xb), ..., φ

r,c(xa,xb), ..., φ
r,C(xa,xb)},

where φr,c(xa,xb) = φ(xr,c
a ,xr,c

b ).
2) Local similarity integration: in order to exploit the

complementary strengths of multiple visual cues within a
local region, a linear similarity function is employed to
combine them together for the r-th region:

sr(xa,xb) =

C∑
c=1

〈φr,c(xa,xb),W
r,c〉F , (3)

where Wr,c = [Wr,c
M ,Wr,c

B ] and Wr,c
M , Wr,c

B correspond
to φr,cM (xa,xb) and φr,cB (xa,xb), respectively. The local
similarities scores are integrated as:

slocal(xa,xb) =

R∑
r=1

sr(xa,xb). (4)

3) Global-local collaboration: in order to describe the
matching of large patterns across the stripes, the polynomial
feature map is also used for the whole image, yielding global
similarity:

sglobal(xa,xb) =

C∑
c=1

〈φG,c(xa,xb),W
G,c〉F , (5)

where WG,c = [WG,c
M ,WG,c

B ] and WG,c
M , WG,c

B corre-
spond to φG,c

M (xa,xb) and φG,c
B (xa,xb), respectively. Here,

φG,c(xa,xb) = φ(xG,c
a ,xG,c

b ) and xG,c
a ,xG,c

b are the c-th
type global visual descriptors for image a and b. Finally, the
global similarity and local similarity are linearly combined,
and the overall similarity score is given by:

s(xa,xb) = slocal(xa,xb) + γsglobal(xa,xb), (6)

where γ is the hyper-parameter that mediates the local and
global similarities (experimentally set to γ = 1.1).

4) Visual Cues and Parameter settings: in the original
model of [5], four visual cues are used (i.e., C = 4).
First, images are resized to 48×128. Each region r (from
R, experimentally set to R = 4)4 is divided into a set
of local patches (with 8×16 of size and stride of 4×8).
For each patch, six types of features are extracted: HSV1,
LAB1 (are 8×8×8 joint histograms), HSV2, LAB2 (are 48

4A default R value was adopted from [5] in order to focus on feature
representation, as they performed an in-depth evaluation of the term.



Fig. 1. Overview of the proposed model. For each sample image, different visual cues are defined (C1, ...,C7). Features are represented in different ways,
also taking into account global (blue regions) and local (salmon region) information. For each probe image and gallery set, different similarity measures
are computed, using different feature representations. Each representation produces a different ranking list, based on the adopted similarity function. The
final ranking list is obtained through ranking aggregation, which combines complementary ranking lists obtained from different feature representations.

bin concatenated histograms with each channel having 16
bins), HOG [19] and SILTP [20] (texture descriptors). The
four visual cues C1, C2, C3 and C4 concatenate both color
and texture features, which are organized as HSV1/HOG,
HSV2/SILTP, LAB1/SILTP and LAB2/HOG, respectively.

Regarding each visual cue, descriptors generated for each
patch, within a specific region r, are concatenated to com-
pose the descriptor of such region. Similarly, the global
descriptor is generated through the concatenation of the
descriptors computed for all patches. Finally, for each de-
scriptor, PCA is applied to reduce the dimensionality, as well
as a whitening process to limit the impact of co-occurrence.
The resulting descriptors are then normalized to have unit
L2 norms. As mentioned in [5], the PCA reduced dimension
d depends on the size of training data. In our experiments
we adopted d to be 120 for all evaluated datasets.

C. Complementary features

In order to improve the state-of-the-art recognition perfor-
mance in person re-identification, we propose to include new
and complementary features within the similarity function
presented in [5], as described next.

1) SCNCD [6]: for each color to be named, salient color
names indicate that a color only has a certain probability of
being assigned to several nearest color names, and that the
closer the color name is to the color, the higher probability
the color has of being assigned to this color name. Through
this way, we can assign multiple similar colors to the same
index with the same color descriptor.

Color distributions over color names in different color
spaces are then obtained and fused to generate a feature
representation. In this work, SCNCD are extracted using the
original RGB, normalized rgb, l1l2l3 and HSV color models
(the number of bins for each channel is set to 32). To be
specific, SCNCD are extracted similarly as in [6], except
that in our model the image is divided in 4 regions (R = 4).
Such procedure is performed locally, regarding each region
r, as well as globally, regarding the whole image.

Two new visual cues are then proposed, C5 and C6. Both
concatenate color and texture features, which are organized
as SCNCD/HOG and SCNCD/SILTP, respectively. In this
case, HOG and SILTP are extracted in the same way as in [5].
As before, PCA is applied to reduce the dimensionality of
both descriptors, which are then normalized.

2) Context information: due to the fact that the back-
ground in person re-identification is not constant and may
even include disturbing factors, background feature rep-
resentation combined directly with the foreground feature
representation may reduce classification accuracy. To address
this problem, [6] proposed an image-foreground feature
representation, which can be seen as that the foreground
information is employed as the main information while
the background information is treated as a secondary one.
Differently from [6], we propose to extract the foreground
mask with a more powerful segmentation model, based on
Deep Decompositional Network (DDN) [21].

The DDN was developed to tackle the problem of pedes-
trian parsing, and designed to segment pedestrian images
into semantic regions, such as hair, head, body, arms, and
legs. It directly maps low-level visual features (HOG) to the
label maps of body parts, being able to accurately estimate
complex pose variations with good robustness to occlusions
and background clutters. In a nutshell, DDN jointly estimates
occluded regions and segments body parts by stacking three
types of hidden layers: occlusion estimation layers, comple-
tion layers, and decomposition layers. The occlusion estima-
tion layers estimate a binary mask, indicating which part of
a pedestrian is invisible. The completion layers synthesize
low-level features of the invisible part from the original
features and the occlusion mask. The decomposition layers
directly transform the synthesized visual features to label
maps. Fig. 2 illustrates some binary masks automatically
obtained using [21]5.

5Implementation provided by the authors, available at http://mmlab.
ie.cuhk.edu.hk/projects/luoWTiccv2013DDN/



Fig. 2. Input images and respective binary masks obtained using [21].

3) Deep feature [9]: the recently proposed Feature Fusion
Net (FFN) is used to allow deep feature representation in the
adopted framework, as it demonstrated to be very effective
in person re-identification tasks. Their FFN consists of two
parts. The first part deals with traditional convolution, pool-
ing and activation neurons for input images. It is composed of
5 convolutional layers. Every convolutional layer is followed
by a pooling layer and a local response normalization layer,
except the 3rd layer. Finally, the output of the 5th pooling
layer is a 4096D vector. The second part of the network
processes additional hand-crafted feature representations of
the same image. Both, CNN features and the hand-crafted
features are followed by a fully connected layer (Buffer
layer) and then linked together in order to produce a full-
fledge image description from the last convolutional layer.

Regarding the hand-crafted features, authors first modified
the Ensemble of Local Features (ELF) [27] by improving the
color space and stripe division (denoted as ELF16). Input
images are equally partitioned into 16 horizontal stripes, and
the features are composed of color features including RGB,
HSV, LAB, XYZ, YCbCr and NTSC, and texture features
including Gabor, Schimid and LBP. A 16D histogram is
extracted for each channel and then normalized by L1 norm.
All histograms are concatenated together to form a single
vector. The FFN was then trained on the recently proposed
Market-1501 [28] dataset, which is the largest public person
re-identification dataset, composed of 38195 images from
1501 identities.

The authors of [9] also mention that even though the
proposed CNN-based feature performs better when compared
to LOMO [22] features, the combination of both kind of
features demonstrates to have higher discriminative power.
Thus, the concatenation of both (CNN-based feat.+LOMO)
is defined in their work as the final representation (31056D
vector - denoted in our work, from now, by just Deep
feature6). We also apply PCA (d = 120, as previously
mentioned) to reduce the dimensionality of the resulting
Deep feature, which is then normalized by L2 norm. This
final representation is used as another complementary cue
(C7). Note that C7 composes a representation for the whole
image, so it will be only used as a global descriptor.

4) Integrating the complementary features: to integrate
the new and complementary features we compute four sim-
ilarity measures using different descriptors (for each pair
of images being compared), which are then exploited next
by the ranking aggregation strategy. To be specific, we
compute sfinali (xa,xb) using Eq. 6, where i ∈ {1, 2, 3, 4},
as described next.
• When i = 1, we employ C1 to C4 (locally and globally,

6Available at http://isee.sysu.edu.cn/resource

as in [5]) and include C7 only in the global part of the
equation. In this case, slocal is computed using four
visual cues and sglobal is computed using five cues.

• When i = 2, we employ C5 and C6 (locally and
globally, as in [5]) and include C7 only in the global
part of the equation. In this case, slocal is computed
using two visual cues and sglobal is computed using
three visual cues.

• In a more simplified way, when i = 3, we just employ
C7 as a global descriptor and use C1 to C4 as local
descriptors. In this case, slocal is computed using four
visual cues and sglobal is computed using only one cue.

• Similarly, when i = 4, we just employ C7 as a global
descriptor and use C5 and C6 as local descriptors. Here,
slocal is computed using two visual cues and sglobal is
computed using only one cue.

D. Ranking Aggregation Strategy

We propose to explore different feature representations
to obtain complementary ranking lists and combine them
using the Stuart ranking aggregation method [23]. The Stuart
ranking aggregation method, which was originally designed
to define a gene-coexpression network over DNA microar-
rays from humans, flies, worms, and yeast, is a probabilistic
method based on order statistics to evaluate the probability
of observing a particular configuration of ranks across the
different organisms, even when there are irrelevant and noise
inputs. The significance of the interactions in the network
is verified by means of a variety of statistical tests. An
optimized solution of [23] is presented in [29].

Let first denote by ⊕ the aggregation operator, for instance
if Ln = L1 ⊕ L2 ⊕ ... ⊕ Ln−1, then Ln is a ranking
list computed by the aggregation of ranking lists from
L1 to Ln−1. As we use different descriptors to represent
each image, and have adopted a strategy in which we can
measure the similarity sfinali (xa,xb) of image pairs using
different ways (i ∈ {1, 2, 3, 4}), we are also able to compute
different ranking lists for each probe image and gallery set,
as illustrated in Fig. 1.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed
model, this section presents experimental results on three
broadly employed public datasets for person re-identification,
i.e., VIPeR [15], PRID450s [17] and CUHK01 [18]. Three
case studies were performed. First, the proposed model was
compared against the state-of-the-art person re-identification
models using a well known evaluation protocol. Then, we
decomposed the proposed complementary features and per-
formed the following two experiments: (i) the influence of
the context information within SCNCD and (ii) the accuracy
performance obtained by each complementary feature.

The adopted datasets are presented in two disjoint cam-
era views, with significant misalignment, light changes and
body part distortion. Table I summarizes the three datasets.
Challenging image samples (due to illumination problems,



TABLE I
SUMMARY OF THE ADOPTED DATASETS.

VIPeR PRID450s CUHK01
Images 1264 900 3884

Individuals (ID) 632 450 971
Images per ID (per view) 1 1 2

pose variation, occlusions or even by high similarity between
different people, etc) are illustrated in Fig. 3.

(a) VIPeR (b) PRID450s (c) CUHK01

Fig. 3. Sample images of the adopted datasets. Images on the same column
represent the same person.

A. Evaluation Protocol

Our experiments follow the evaluation protocol defined
in [13] for a single-shot scenario, i.e. we randomly parti-
tioned each dataset into two parts, 50% for training and
50% for testing, without overlap on person identities (as
the CUHK01 dataset contains 971 individuals, 485 of them
were randomly sampled for training and the rest for testing,
as in [24]). Images from camera A are used as probe and
those from camera B as gallery. For the CUHK01 dataset, in
which each individual has two images per camera view, we
randomly selected one image of the individual taken from
the camera A as the probe image and one image of the same
individual taken from the camera B as the gallery image.
For all evaluated datasets, each probe image is matched with
every image in gallery and the rank of correct match is
obtained. This procedure is repeated 10 times and the average
of Cumulative Matching Characteristic (CMC) curves, which
is the most widely used evaluation methodology for person
re-identification [2], across 10 partitions is reported.

B. Case 1: State-of-the-art comparison

This experiment compares the overall accuracy perfor-
mance of the proposed model in relation to the state-of-
the-art. Different feature representations were integrated, as
described in Sec. III-C.4, followed by the ranking aggrega-
tion strategy described in Sec. III-D. Table II summarizes
the obtained results. As it can be seen in Table II, the
proposed model outperforms the state-of-the-art on both
VIPeR and PRID450s datasets, and achieved competitive
results on CUHK01 dataset. We can also observe that two
competitive approaches (i.e., LSSCDL and FT-JSTL+DGD),
which obtained promising results on CUHK01 dataset, were
outperformed by the proposed model (27.41% and 34.32%,
respectively) on VIPeR dataset (while our method still

TABLE II
STATE-OF-THE-ART COMPARISON. TOP MATCHING RANK (%) ON THE

THREE ADOPTED DATASETS.

Rank 1 5 10 20
VIPeR

Our 58.77 86.39 93.48 97.82
SCSP [5] 53.54 82.59 91.49 96.65

Deep+LOMO [9] 51.06 81.01 91.39 96.90
TCP [4] 47.80 74.70 84.80 91.10

CMC [13] 45.90 77.50 88.90 95.80
Mirror [10] 42.97 75.82 87.28 94.84

LSSCDL [24] 42.66 - 84.27 91.93
FT-JSTL+DGD[11] 38.60 - - -

CBRA [16]7 31.20 60.80 74.30 85.90
PRID450s

Our 71.56 90.58 94.40 96.98
Deep+LOMO [9] 66.62 86.84 92.84 96.89

LSSCDL [24] 60.49 - 88.58 93.60
Mirror [10] 55.42 79.29 87.82 93.87
CBRA [16]7 26.40 57.10 71.00 83.20

CUHK01
FT-JSTL+DGD[11] 66.60 - - -

LSSCDL [24] 65.97 ≈ 88.0 ≈ 92.0 ≈ 96.0
Our 59.63 83.66 89.71 94.39

Deep+LOMO [9] 55.51 78.40 83.68 92.59
3TCP [4]8 53.70 84.30 91.00 96.30
CMC [13] 53.40 76.40 84.40 90.50
Mirror [10] 40.40 64.63 75.34 84.08

achieved better accuracy performance than LSSCDL method
on PRID450s dataset, with an improvement of 15.47%).

The work proposed in [11] was designed to learn feature
representations from multiple domains, and a very large
training set was adopted. As the authors mentioned it would
be insufficient to learn such CNN when a quite small dataset
is employed. To this end, part of the CUHK03 [14] dataset
(which is composed by 13164 images) was also included in
their training set. Notice that CUHK03 dataset was captured
in the same environment as in the CUHK01 dataset, which
could benefit person re-identification when CUHK01 dataset
is adopted as both share similar features. Regarding [24],
it learns a classifier specifically for each pedestrian such
that the matching model is highly tuned to the individual’s
appearance. This model’s characteristic can benefit when
large training sets are employed (i.e., CUHK01).

C. Case 2: SCNCD with/without context information

This experiment analyzed the accuracy performance of the
context information within SCNCD (described in Sec. III-
C.2). To this end, we set up the adopted framework to
load only the following visual cues, C5 and C6 (detailed
in Sec. III-C.1, i.e., without deep features), both without
and with the context information. Fig. 4 shows the CMC
curves obtained for this experiment (for the first rank values).
As it can be observed, the context information significantly
improved the overall accuracy on the three evaluated datasets,

7Last accuracy performance provided by the authors is described in www.
ssig.dcc.ufmg.br/reid-results

8For the CUHK01 dataset, authors employed a different configuration
with additional convolution layers.



being effective to remove the background noise. Yang et
al. [6] obtained same conclusion when evaluating both
representations (image-foreground and image-only, i.e., with
and without context information) on VIPeR and PRID450s
datasets. However, differently from their work, in which
the evaluation was performed using only RGB information,
combined with the segmentation model proposed in [30] and
the KISSME [12] metric learning, we adopted a more pow-
erful segmentation strategy, as well as a different similarity
function.

It can also be noticed from Fig. 4, that the proposed feature
representation based on SCNCD slightly improved obtained
results (for the VIPeR dataset) reported in [5] (see Table II),
demonstrating its effectiveness.

Fig. 4. Accuracy performances based on SCNCD (i.e., using only C5

and C6), with and without context information (solid and dashed lines,
respectively). Top-1 rank values, for each case, are also provided.

D. Case 3: Complementary feature representations
This experiment evaluated the complementary features

individually. Each proposed feature representation was in-
tegrated as detailed in Sec. III-C.4, and sfinali is adopted
as the similarity function related to each representation i
(i ∈ {1, 2, 3, 4}). For the sake of simplicity, lets denote the
proposed representations as F1, F2, F3 and F4, and the the
baseline [5] feature representation as F0. Obtained results
are shown in Fig. 5 in terms of top-1 rank recognition rate.

Fig. 5. Accuracy performance obtained for each feature representation Fi

(Sec. III-C.4), for the VIPeR, PRID450s and CUHK01 datasets. In this case,
F0 is related to the baseline feature representation [5].

From Fig. 5 we can make the following observations:
• All complementary features outperformed the baseline

feature representation (F0).
• F1 and F3 obtained very similar accuracy performances,

as well F2 and F4 (in this case, in at least two of

the three adopted datasets). F3 and F4 are simplifica-
tions of F1 and F2, respectively (i.e., they only use
deep features to describe global information). Based
on these observations we can conclude the proposed
simplifications still have strong discriminative power
for person re-identification applications, and require
less computation resources when compared to their
respective and complete representations.

• The previous observation also emphasizes the benefits
of the inclusion of deep features if we only consider
F1 and F3, for example, and their obtained accuracy
performances (compared to F0). Notice that F1 and F3

(despite the inclusion of deep features) are based on the
same visual cues as F0.

• F2, which exploits SCNCD (with context information)
and deep features, obtained the best overall accuracy
performance in the three adopted datasets. It should be
noticed that, despite feature extraction procedures, F2

is more compact than F1 (i.e., it use five cues instead
of nine) and employ the same number of visual cues as
F3 (both are composed by five cues).

The previously mentioned observations indicate that the
proposed complementary feature representations have strong
discriminative power in person re-identification applications,
mainly when combined through a ranking aggregation strat-
egy, as shown in Sec. IV-B. In addition, different integration
strategies (from those described in Sec. III-C.4) were also
evaluated in other experiments (e.g., the integration of all
features, C1 to C7, using the simplified and complete rep-
resentations), however, no significant accuracy performance
improvements were observed.

E. Computational cost

We adapted the MATLAB implementation provided in [5]
to consider the proposed complementary features. The deep
features were provided by the authors [9]. However, they
reported their FFN approach requires about 1s (one second)
per image to extract deep features9 on VIPeR dataset (also
taking into account the concatenation with LOMO features).

Taking the VIPeR dataset as example, our implementa-
tion10 requires (per image) 0.146s to compute the binary
mask, 0.131s with SCNCD feature extraction and 0.069s
with baseline features extraction. In the feature representation
stage, it takes 5.348s to build {C1, ...,C4} for each image,
0.174s to build {C5, ...,C6} and 0.063s to reduce the
dimensionality of deep feature and build C7.

In the learning stage of a single run on VIPeR dataset
(see Sec. IV-A for details), it takes 239.738s, 125.857s,
194.289s and 102.863s, when using F1, F2, F3 and F4,
respectively. In the test stage, each probe image requires
0.014s, 0.007s, 0.011s and 0.006s, when using F1, F2,
F3 and F4, respectively. Finally, to compute the ranking
aggregation and generate the final rank list of each probe
image, it requires 0.1473s.

9Using a 2.00GHz Xeon CPU with 16 cores.
10Using a 2.30GHz Intel Core i7 CPU and 8Gb of memory, without

considering I/O procedures and image resize operations.



V. CONCLUSION

In this work we exploited different feature representations,
combined with a ranking aggregation strategy, to advance
the state-of-the-art in person re-identification. Our model
was built on a very robust framework, which combines
similarity learning metric with spatial constraints. The pro-
posed SCNCD-based feature representation (F2), which ex-
ploits context information, also combined with deep features,
demonstrated to have strong discriminative power, even when
its simplified version is employed. In particular, when con-
sidering the SCNCD-based representation individually, the
inclusion of context information on it improved the top-1
rank recognition performance by an average value of 11.63%
(±1.1) in all adopted datasets. Compared to the baseline
features [5], the proposed F2 feature representation improved
the top-1 rank recognition by 6.48%, 13.0% and 19.07%, on
VIPeR, PRID450s and CUHK01 datasets, respectively.

The ranking aggregation strategy improved the best ob-
tained recognition performance for each new feature repre-
sentation when treated individually, i.e., F4 for the VIPeR,
F4 for the PRID450s and F2 for the CUHK01 datasets, by
2.28%, 0.6% and 6.9%, respectively, demonstrating to be
very effective on integrating complementary ranking lists.

The proposed new features demonstrated to complement
each other, being very powerful when combined with a
ranking aggregation strategy. We show that handcrafted and
deep features fusion enhance re-identification performance
especially in domains where there is a reduced amount
of available data. Quantitative evaluation based on three
broadly employed datasets demonstrated the proposed model
outperformed the state-of-the-art in at least two of them
(VIPeR and PRID450s), as well as obtained competitive
results in the third one (CUHK01). In particular, two compet-
itive approaches [24], [11], which obtained promising results
on CUHK01 dataset, were outperformed (i.e.,27.41% and
34.32%, respectively) by the proposed model, on the VIPeR
dataset, while our method still outperformed [24] by 15.47%
on PRID450s dataset.
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