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Abstract. Stent placement is a well-established clinical routine for treat-
ing coronary diseases due to its safety and minimal invasive surgery. In
this paper, an automatic method for stent struct detection in Intravascu-
lar Ultrasound (IVUS) images is proposed based on a novel framework,
which combines local and contextual information of strut appearance. In
the first stage, local features are extracted from a wide filter base and
used in a pixel-wise classification aimed at detecting candidate pixels be-
longing to stent struts. Since the appearance of the contextual surround-
ing structures is critical to remove artifacts with similar local appearance
to struts, the former detection map is refined by using contextual fea-
tures from the image patch centered at the candidate pixel.The proposed
algorithm has been widely tested on 273 images of 12 pullbacks achieving
encouraging results.
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1 Introduction

Atherosclerosis is a hazardous disease, in which arterial wall hardens and thick-
ens. A routine treatment for this kind of coronary artery disease is stent place-
ment, which can re-dilate the artery with minimal invasive surgery. However,
this technique also carries considerable potential risk due to underexpansion or
malaposition of the stent, which can increase the risk of restenosis and throm-
bosis. IVUS is a catheter-based technique, which allows to visualize the result
of stent vessel placement as well as to detect underexpansion and malaposition.
Due to the large amount of data acquired during an IVUS pullback, manual
analysis of stent positioning is difficult and time-consuming. Therefore, an au-
tomatic method for stent strut detection in IVUS images is on demand to speed
up this analysis and reduce the subjectivity of manual segmentation [4].

Despite of the high clinical interest, surprisingly, only very little research
on automatic analysis of stent implantation in IVUS can be found in the lit-
erature. Cañero et al. [1] proposed a technique to visualize and quantify the
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mutual position between the stent and the vessel wall in IVUS pullbacks. Two
deformable generalized cylinders, corresponding to the vessel wall and the stent,
were adapted to image features in the IVUS sequence in order to obtain a 3D re-
construction of the stent and vessel borders. This algorithm showed its potential
of detecting stent border, but it has only been qualitatively validated. Dijkstra et
al. [4] proposed a stent contour detection algorithm. Firstly, a rough detection
was performed to detect stent border based on brightness information. Then,
two different model-guide optimizations were carried out to optimize the results.
An improved method was proposed by the same authors [5], in which the local
stent contour was adjusted using the information of the whole 3D model. This
technique demonstrated its capability of detecting stent boundaries, however, it
requires manual correction and images of good quality. A method for automatic
detection of bio-absorbable coronary stent was proposed by Rotger et al. [8].
In this work, a cascade of classifiers was employed based on Haar-like features,
which were selected to take advantage of the special appearance of polymer stent
in IVUS images. This method is specialized on biodegradable struts and metallic
struts are not considered by the authors.

In this paper, an automatic method is proposed to detect stent struts in 2D
IVUS frames. The proposed detection method is mainly based on extraction of a
wide set of IVUS features and applying machine learning techniques, due to the
large amount of variation of the appearance of stents and complexity of IVUS
images. The detection framework consists of two main stages. Firstly, pixel-wise
descriptors are constructed and classified to detect potential strut candidates.
This step is capable to locate almost all the struts, while still allowing some
false positives (FPs). Secondly, these strut candidates are represented in a fea-
ture space using higher order contextual information by means of patch-based
descriptors. Thus, stent struts are detected according to the morphological struc-
tures that surround them. Finally, the detection windows are merged to obtain
an accurate strut location. We validate our method on 12 patients dataset of dif-
ferent clinical situations (underexpanded or malaposed stents, etc.) extracting
several statistical measures like precision, sensitivity and F-measure to analyse
the performance of the method.

2 Method

The pipeline of our method for automatic stent strut detection is shown in Fig.1.

2.1 Pixel-Based Classification

Stent struts appear in IVUS images as thin strips, which are bright and close to
lumen, as shown in Fig.1 (a). Considering the intensity and shape characteristics
of stent struts, several features have been specially chosen for the detection
task. The intensity properties of stent struts are captured using: its intensity,
the maximum, mean intensity and standard deviation of its neighbourhood.
Besides, ridges are good at detecting connected regions of high intensities [1].
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Fig. 1: Pipeline of the algorithm: (a) original image in polar system; (b) First strut
detection map (c) Detected windows (blue) containing strut candidates; (d) Final de-
tection windows in blue with their centers (blue dots) and ground truth (red dots).

In addition, the texture information of the image can be captured by 20 Gabor
filters at different scales and orientations [2]. Furthermore, the shape of the struts
is represented by a blob detector [6], which is a circularly symmetric Laplacian
of Gaussian operator producing a high response at the center of image region
with a blob shape. In summary, 36 local features are obtained to describe strut
pixels.

Once defined the descriptor of strut centers, we proceed with a classification
task to decide whether a pixel belongs to a strut. Adaboost with Decision Stumps
is applied to the pixel-wise descriptors as one of the optimal classifiers to detect
objects in images [9]. Moreover, it is capable of managing to learn from a large
amount of data and features.

2.2 Patch-Based Classification

The first step produces potential strut candidates that represent a rough approx-
imation of struts location. Since no contextual information has been exploited,
the detection of false positives in regions characterized by high intensities and
rounded shape is expected. In order to reduce FPs, a patch-based classification
is defined, since the neighbourhood of stent struts provides a very diverse in-
formation to decide the presence of struts. Hence, we exploit the information
of the local context around the strut candidates. For this purpose, a squared
window of size (24× 24) pixels is considered at each candidate pixel and a set of
contextual features are extracted from each patch, as we estimated empirically
that a window of (10 × 16) pixels (corresponding to (0.2 × 0.32) mm in polar
coordinates) is enough to contain a strut. For each patch, three main operators
are applied to extract features, namely Histogram of Oriented Gradients (HoG),
Local Binary Patterns (LBP) and Steerable Filters (SF).

HoG is selected as a very characteristic descriptor, as it can capture the local
appearance and shape of struts using the histogram of local gradient of different
angles [3]. The edge structure related to image gradient can well characterize
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local shape, as well as it is translation and intensity invariant. In this work, an
image patch is divided into 3 × 3 overlapping cells and 9 orientation bins are
used in the histogram as the optimal number of orientation bins for performance
and computation cost [3]. LBP is another efficient texture descriptor, based on
a binary comparison of the intensities of the center pixel and its neighbourhood.
In this work, it is applied at the center of the image patch at 3 scales (circular
neighbourhoods of radius of 1,2,3 pixels) and a rotationally invariant histogram
is constructed for each of them achieving the property of being invariant to scale
and rotation [7]. SF is used to highlight the strut regions. The image patch
after filtering is divided into 9 parts, for each of which the mean and standard
deviation are computed. Finally, the maximum intensity of the patch and the
value of the distance with respect to the catheter are also included as additional
features. A feature vector of length of 706 elements was extracted for each patch.

Adaboost with decision stumps is, again, chosen as the classifier to solve the
binary classification problem to decide whether each detected window contains
a struct or not.

2.3 Training Strategy

In order to train the pixel-wise classifier, a ground truth map needs to be gener-
ated to indicate which pixels belong to struts. As for this project only the center
position of every strut is provided, the average size of the struts is measured by
using an average template, which is calculated by taking a window of (36×36)
pixels around every ground truth point and computing the average intensity of
these windows.In order to select the real mean size of the struts, pixels with an
intensity value lower than the 50% of the highest intensity are removed. How-
ever, the image contains a bright region below the center due to some mala-posed
struts, therefore, as struts regions are symmetrical, the height is selected as twice
the distance from the center to the uppermost point, achieving a size of (10×16)
pixels. To ensure all the positive samples are taken from strut regions, a win-
dow (4×4) pixels is used instead. Negative samples are selected from outside the
(10× 16) window and pixels between these two windows are not considered for
the training step.

2.4 Window Merging

The detection windows should be merged to reduce multiple candidates yield by
the patch-wise classification. First of all, a window density image is generated
by summing up the window number over each pixel in the image, as shown in
Fig 2 (a). As stent struts often appear brighter than their neighbors, a combined
density map is defined: C = P × I3, where × represents the pixel-wise product,
P is the window density image, I is the image intensity. The regions with the
highest response in the combined map are separated to locate precisely each
strut, as shown in Fig.2. The result is further processed by removing very small
regions and those, whose radius distance is further than 3/4 of the height of the
image, taking into account the stent context in the IVUS image.
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Fig. 2: Pipeline of window merging procedure: (a) Window density image; (b) Original
image smoothed by a Gaussian; (c) Combined density map; (d) Final detection win-
dows. (Red points are ground truth; Blue points are detected strut centers and blue
windows are the final detection windows.)

3 Experimental Results

We validate our stent strut detection algorithm on 273 IVUS images from 12
pullbacks, in an average of 23 frames per pullback. These images contain stents
from various companies, such as Skylor, Coroflex, and so on. All the images
were acquired with Boston Scientific iLab IVUS Imaging System. In order to
obtain a dataset of a large variability and of reasonable size, only around 23
representative frames are selected for each patient, considering the similarity of
adjacent frames of one patient. As there is special clinical interest on under-
expansion and mala-position, we have selected a challenging dataset, in which
all the patients have under-expansion or mala-position to different degree and
some patients have serious calcification. The ground truth was made by manually
labelling the center of struts with a point by two physicians at Hospital Germans
Trias i Pujol in Spain. Moreover, only the struts identified with high confidence
were marked.

3.1 Evaluation methodology

In order to evaluate the detection result quantitatively, two measurements are
computed. First, precision and sensitivity curves are given. Second, the average
and standard deviation of the distance from a detected stent strut center to
the ground truth center is reported. To decide whether a strut marked in the
ground truth is correctly detected, for each detected strut center, we construct
a square window of 10×16 pixels around it: if the ground truth point is inside
the window, it is considered as a true positive (TP), otherwise it is considered
as a FP. In order to compared our method with previous work, we also compute
the F measure using precision and sensitivity, F = PS/(P+S) [8].

Due to the large amount of data, the 12 patients were separated into 4 exclu-
sive sets and cross validation has been applied on them. Given that 4-fold cross-
validation ’leaving three patients out’ is used to obtain the average score. Results
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are expected to provide a lower bound on the performance of the methodology
on new patients.

3.2 Results

The first quantitative analysis of the performance of the method is shown by
the curve of precision and sensitivity of each patient varying with respect to the
threshold of the combined window detection density map, as shown in Fig.3.
The average equal precision and sensitivity, which is the crossing point between
the two curves, is reached at 66% with an average threshold of 0.17.

(a) (b) (c)

Fig. 3: (a) Curve of sensitivity (red) and precision (blue) varying with respect to the
threshold of the combined map, averaged by the 4 folds of the cross validation. (b)
Training error of Adaboost, strong classifier (red dots) and all the weak ones (blue dots),
in the first classification. (c) Training error of Adaboost in the second classification.

In order to further measure the quality of the accuracy of the detection, the
distance from the center of the detected struts to the ground truth was calcu-
lated. The average Euclidean distance is 2.18 pixels (0.04 mm) with a variance
of 1.72 pixel (0.03 mm). Note that the average size of the stent struts is around
10× 16 pixels, thus, our detection is extremely close to the ground truth.

Qualitative results are depicted in Fig. 4, where both the ground truth points
and the results of the detection algorithm are shown. Most of the stent struts are
correctly detected and the detections are very close to the ground truth points.
Even, some of them can be argued to be more accurate, as they are closer to
the real center of the strut than the ground truth points are. However, there
remain some FPs. FPs usually corresponding to small calcified regions near the
lumen border which have very similar appearance to stent struts. Additionally,
we should note that physicians only annotated struts that they are completely
confident about their presence. This causes some candidate struts (see Fig. 4(g))
to be considered as arguably false positives, worsening the overall performance.
Missing struts mainly come from regions resembling fibrotic tissue. Fig. 4(h)
shows an example of a malaposed strut that has been missed by the algorithm
and can only be detected by considering the whole stent configuration.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Results of the automatic struts detection: The red points shows the ground
truth; The green points present the detected strut centers and the yellow windows are
the final detection windows

4 Discussions

In this work Adaboost was used with Decision Stumps as a reference classifier.
The iteration limit in the first classification step is set to be 72, with which
the error of Adaboost goes to less than 5%, as shown in Fig. 3 (a). This step
ensures that nearly all positive samples are correctly detected but more than
90% of the whole set of pixels are removed. The second classifier focuses on
the remaining candidate pixel set and describes the patches centred at them in
order to capture the contextual appearance. This results in a 706-element feature
vector. The second classifier converged at around 10% error rate Fig. 3 (b).

It is important to mention that in this dataset all the patients contain mala-
position and some of them also have under-expansion. Images of patients with
malaposition are challenging, since they have low intensities and they are not
connected to the lumen, which may create a special shadow, different from nor-
mal struts.

5 Conclusions and Future Work

In this work, a novel method of stent strut detection is proposed, which inte-
grates three steps: pixel-based local classification, patch-based feature extraction
for contextual local appearance description and classification and, finally, a de-
tection fusion step. The methodology is tested on a challenging dataset including
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normal and malapposed stent struts. It is worth noting that malapposed stent
struts have a different appearance from well-posed ones. This method is capable
to detect struts with equal precision and sensitivity at 66% and an average pixel
error of 2.18 pixels. In this paper we propose to validate the struts detection on
2D IVUS images without using any information of media, lumen or the whole
pullback. Unfortunately there is no information in the literature on the perfor-
mance of other methods working under the same conditions to compare with.
Naturally, using global context like lumen and media as used by Rotger et.al.
[8] or information from the whole pullback as used by Dijkstra et.al. [4] will
additionally improve the results.

As discussed in the results section, there are some missing struts difficult to
detect locally. Thus, one of the future lines is to include global morphological
context information in order to disambiguate those cases. Additionally, very
small calcified deposits on the lumen border resemble single stent struts need to
be well handled. One of the main problems in assessing the results of the proposed
method with respect to the state-of-the-art literature is the lack of a common
database and methodology for automatic method validation. Different IVUS
equipments and catheter specifications result in completely different problems.
We plan to contribute in the future in constructing such a public database and
well accepted validation methodology.
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