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Abstract. Automated video and image analysis can be a very efficient tool to an-
alyze animal behavior based on sociality, especially in hard access environments
for researchers. The understanding of this social behavior can play a key role in
the sustainable design of capture policies of many species. This paper proposes the
use of computer vision algorithms to identify and track a specific specie, the Nor-
way lobster, Nephrops norvegicus, a burrowing decapod with relevant commercial
value which is captured by trawling. These animals can only be captured when are
engaged in seabed excursions, which are strongly related with their social behav-
ior. This emergent behavior is modulated by the day-night cycle, but their social
interactions remain unknown to the scientific community. The paper introduces an
identification scheme made of four distinguishable black and white tags (geometric
shapes). The project has recorded 15-day experiments in laboratory pools, under
monochromatic blue light (472 nm.) and darkness conditions (recorded using Infra
Red light). Using this massive image set, we propose a comparative of state-of-
the-art computer vision algorithms to distinguish and track the different animals’
movements. We evaluate the robustness to the high noise presence in the infrared
video signals and free out-of-plane rotations due to animal movement. The exper-
iments show promising accuracies under a cross-validation protocol, being adapt-
able to the automation and analysis of large scale data. In a second contribution,
we created an extensive dataset of shapes (46027 different shapes) from four daily
experimental video recordings, which will be available to the community.
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Introduction

The study of rhythmic behaviour in deep-water marine organisms is, to date, limited both
in the laboratory and in the field, due to the poor technological development of actog-
raphy and telemetry [1]. Differently from land organisms, marine species present tech-
nical difficulties when their behaviour is monitored over prolonged periods of time, due
to the presence of saline water [2]. In this context, the majority of studies dealing with
marine species behavioural rhythms still often set the focus on single individuals, and
avoid focusing on the influences that modulating intraspecific interactions may exert on
the expression of activity itself. The biological clock regulation is then studied with tech-
niques exported and adapted from the field of chronobiology, where individual actogra-
phy still dominates the scene [3]. As a consequence, in front of the increasing awareness
on neuronal processes regulating individual rhythmic behaviour, there is a concomitant
and general lack of knowledge on the effects of sociality on its modulation.

The Norway lobster, Nephrops norvegicus is a burrowing decapod representing a
major target in crustacean European fishery[4]. Animals can be captured by trawling only
during burrow emergence, the timing of which is set upon the daynight cycle. Emergence
is also modulated by social interaction in a fashion that is to date not clarified. Doubts on
real stock size are reported by comparing field sampling data from trawling with more
direct observations on individual behaviour in the laboratory [5]. Under isolating con-
trolled conditions each individual expresses neat locomotor activity. Anyway, the analy-
sis of catch samples by sex and size during different periods of the year suggests a mod-
ification of emergence during different stages of the growth or the reproductive cycle.
Emergence is also apparently modulated by the close proximity of other co-specifics (as
presence-absence close to the burrow), being this specie territorial [6][7].

Behavioral animal video recording generates a huge number of videos with a large
quantity of recorded hours. The human annotation of these videos requires trained peo-
ple that costs large amounts of time and economical resources. Video-image analysis can
be an efficient tool for microcosm experiments portraying the modulation of individual
behaviour based on social interactions. Video-image analysis is increasing its applicabil-
ity to the biological research, both in the laboratory and in the field, due to the progress
in frame processing for object recognition [8]. Differently from actography, hardware
settings are easier, since they do not require the use of infrared barriers [2] or wheels [9],
and it’s not orientated to analyze social behaviour.

The analysis of social behaviour presents major limitations in the discrimination and
tracking of the movement of single individuals within a group. This can be overcome
with the design of particular individual tags [10][11] to make possible the differentiation
among individuals. Also it is possible to mark individuals using electronic devices like
RFID chip [12] applied to Norway lobsters, or a combination of both technologies [13]
(in this particular case applied to house mice). When using Computer vision methods, the
tag geometry or image quality become the central issues that condition the performance
of video-image analysis and tracking with multiple individuals. In [14], authors used
background subtraction techniques with flight path characteristics to identify up to 40
fruit fly (Drosophila melanogaster) individuals.

In this paper, we present a comparative study of the most commonly used methods
in computer vision for feature extraction and object recognition, in the context of an ap-
plication to marine animal tracking. This study is a prerequisite to the posterior auto-



mated behavior analysis, which is based on the location and recognition of the tags with
different shapes placed on the top of animal’s cephalothoraxes.

1. Materials and methods

1.1. Animals, social tank and video settings

Animals were collected exclusively at night-time by a commercial trawler on the shelf
area (100 m) of the Ebro delta (Tarragona, Spain). In order to avoid retinal damage [15]
animals were never exposed to sunlight. Once captured (at night) all the operations on
the deck of the trawler were performed under dim red light. Lobsters were immediately
transferred to dark and refrigerated containers and then transported to the laboratory [2].

In the laboratory, specimens were transferred to acclimation tanks, hosted within
a light-proof isolated chamber under the following conditions: (i) constant tempera-
ture of 13± 1◦C, as reported for the western Mediterranean continental slope through-
out the year [16]; (ii) random feeding time in order to prevent entrainment through
food-entraining oscillators, as shown for crustaceans [17]; and (iii) LD blue monochro-
matic regime whose photophase duration matched the natural condition at the latitude
of Barcelona (41◦ 23.0′ N). Also, light-ON and -OFF, were progressively attained and
extinguished within 30 min in order to acclimate animal’s eyes to light intensity change.
The acclimation facility hosted individual cells (25×20×30 cm) made with a plastic net
of different size in order to allow oxygenation, but not physical contact between animals.
Acclimation was carried out at least 1 month prior to behavioural tests.

In order to track individual animals, we designed four different tags in the exper-
imental recordings. Tags are composed of a circle of black color and a white figure in
center of the circle, with an approximate diameter of 45 mm. Figures are circle, holed
circle, triangle and holed triangle and then are glued on the cephalothorax top. Figure 1
shows original form examples and animals with glued tag.

A fiberglass social tank of 150cm×70cm×30cm was constructed in order to simu-
late selected environmental features of N. norvegicus habitat (see an example in Figure
1), and include: the presence of four burrows (entrance and tunnel diameters of 10 and
7 cm, respectively; tunnel length of 25 cm; angular inclination of burrow entrance of
20◦) and substratum simulating the sediment (made by synthetic acrylic glued to the tank
base).

An USB 2.0 monochrome high-quality CMOS sensors digital camera (UI-1545LE-
M, IDS) of 1280×1024 pixels resolution (SXGA/1.3 MP) took a frame each 1s. during
15 days through a software application (i.e. iSpy an open source surveillance software).
That application stored each 24 hours a video record, naming it with the progressing date
and time of acquisition. The video camera was endowed with a wide-angular objective
of 6.0 mm and F1.4 screw C 1/2 (IDS) and it was placed in zenith position.

The illumination of the experiments was made with LED tubes of blue light (472
nm) and infrared (IR) light (860 nm), located in longitudinal position along the tank. We
used blue light to simulate light conditions at deep sea [18], and IR light to allow record-
ing the animals in darkness conditions. Finally all recordings were made in grayscale,
given that the illumination light spectrum is not suitable for color recordings.



Figure 1. Two different frames of distinct experiments. Notice the high variability in the illumination and the
appearance of one claw on the bottom of the tank (left frame), which is a result of a fight between two animals.
In the middle of the figure we depict the designed tags photographed out of sea water (in perfectly controlled
conditions).

Figure 2. Examples of several tags in a real situation, extracted from the same video recording. Notice differ-
ences in position, rotation and illumination.

1.2. Construction of the benchmark database

The proposed benchmark dataset consists of four videos extracted from distinct experi-
mental trials. A total of 17 biological experiments were conducted, lasting 15 days each,
and recorded at 24 fps during 60 minutes per day (approximatelly 500Gb of disk space).
Figure 1 shows some examples of the tank and the prototypical examples of the tags.

Depending on exact time, some of the animals are partially/globally occluded in
the burrows. In a preprocessing step, we took benefit of the static tank’s position and
we computed the bounding box of each animal using a simple background subtraction
algorithm. From each detected bounding box, we found the central region of the animal,
and obtained the candidate tag image. Each image (32×32 pixels) was manually labelled
by a human annotator, and erroneous detections were discarded. The final tag database
contains 46027 images, and it consists of: 15212 images from circles, 13451 images
from holed circle, 6369 images from triangles, and 10995 images from holed triangle.
Notice that the database is not fully balanced, given that some animals remain occluded
longer periods of time. Figure 2 illustrates some of the segmented tags under different
acquisition conditions.



1.3. Image classification

Once the image has been segmented and the subject is located, we used only the bounding
box of the tag location from the fixed position in the subject’s back. The tag can appear
to the classifier in any orientation, being the rotation invariant property critical for a
successful classification process. Depending on the subject’s position, we usually find
slight variations in the scale and relevant out of plane rotations.

To classify the images, we evaluated 5 different feature extraction methods: the Scale
Invariant Feature Transform (SIFT) [19], The Oriented, Fast and Rotated Brief (ORB) al-
gorithm [20], the The Local Binary Patterns (LBP) algorithm [21], the classic Fisher Lin-
ear Discriminant Analysis (FLD) [22] and Principal Component Analysis (PCA) [23]. In
this section we briefly overview the main details of the implementation of each feature
extraction algorithm. We used as a classification rules the KNN Nearest Neighbors and
the Support Vector Machines classifiers [24], depending on the method proposed by the
referred authors.

The SIFT algorithm is a non linear feature extraction method based on two steps.
First a salient point detection is performed. The most used method is to convolve the
image with Gaussian filters and select local maxima and minima from different scales of
the image. Then, per each key point, the magnitude and phase of the gradient are com-
puted. An 8 bins histogram of the phase is computed and weighted by the magnitude of
the gradient at each pixel. The histogram is ordered with respect to the dominant orien-
tation, conferring to the algorithm with a strong robustness to image rotations. In this
paper we followed the implementation from [19], which has been successfully applied
to numerous object recognition problems.

The ORB algorithm is a fast visual descriptor based on the BRIEF (Binary Robust
Independent Elementary Features) method [25]. BRIEF descriptors are a string of bits
obtained performing simple random binary tests on the neighborhood of each key point.
In order to improve its robustness to in-plane rotation, ORB steers the key point neigh-
borhood with respect to its dominant orientation. In addition, the ORB algorithm im-
proves BRIEF in the computation of the location of the binary tests. Instead of sampling
random positions from a Gaussian distribution, ORB learns the best set of tests according
to a training set, in a Greedy search for the tests with higher variance. In this paper we
used the OpenCV implementation from [20], which has been successfully been applied
to object detection and tracking.

The LBP algorithm has been successfully applied to several computer vision tasks,
such as object recognition [21] and facial expression classification [26]. The method also
performs binary tests on the neighborhood of each pixel, in a dense manner. Nevertheless,
the tests in LBP are performed clockwise with respect to the central pixel of its circular
neighborhood. If a pixel value is greater than the central pixel, it gets a 1, and 0 otherwise.
The eight surrounding pixels of each keypoint are encoded as 8 bits (8 neighbors), which
constitute a number from 0 to 255. Finally, per each cell of the image the histogram of
these numbers is computed and used as a visual descriptor.

Finally we used the well known Fisher Linear Discriminant Analysis (FLD) [22] and
PCA [23] feature extraction algorithms as a baseline. PCA finds the projection matrix
that reduces the data dimensionality minimizing the reconstruction error, or equivalently
maximizing the data variance in the projected space. This linear transform is holistic and
not invariant to scale, rotation or affine transforms. Similarly the FLD algorithm fins a



Table 1. Mean accuracy and 95% confidence intervals of the proposed algorithms.

ORB + KNN SIFT + KNN ORB + SVM LBP + KNN

86.03±0.30 96.44±0.20 99.24±0.17 94.77±0.09

Fisher + KNN PCA + KNN ORB + BOW + SVM SIFT + BOW + SVM

97.20±0.17 98.67±0,10 99.39±0.06 99.40±0.08

Table 2. Mean CPU time consumed in seconds to classify one shape.

ORB + KNN SIFT + KNN ORB + SVM LBP + KNN

2.7447630 14.821450 0.004693985 1.4778730

Fisher + KNN PCA + KNN ORB + BOW + SVM SIFT + BOW + SVM

0.0113380 0.1082115 0.02960849 0.02302241

projection matrix to perform a dimensionality reduction on the data. Nevertheless, FLD
takes into account the class membership of each sample in the training data, obtaining
the projection directions where samples from different classes are maximally scattered,
and samples from the same class are projected as close as possible.

In addition, we also implemented the Bag of Words model [27], given its strong
success in the content based image retrieval literature [28]. Essentially we used the best
two feature extractors (ORB and SIFT) to locate relevant keypoints and computed local
scale invariant features. Then, the obtained samples are clustered in 1024 bags for SIFT
and 4096 bags for ORB (using the k-means algorithm), and we construct a histogram
per image. This histogram acts as a rotation invariant feature vector focused on the main
features of each class. Finally, a SVM (RBF) is trained on these features as in [27]. The
parameters from the SVM have been set automatically crossvalidating the training set.

All these methods have been implemented using the out-of-the-box code from the
OpenCV library, and tests have been performed using the Python version of the OpenCV
[29] and the scikit-learn library.

2. Experimental results

In all the cases, we followed a 10-fold cross validation protocol. We randomly split the
database in ten folds, and nine of them were used for training and 1 for testing. The ex-
periments were repeated then times, each time with a different testing fold. Table 1 sum-
marizes the mean accuracies along the ten iterations and the 95% confidence intervals.

The best performing feature extraction method is ORB, especially when used with
the SVM classifier. The difference in mean accuracy from ORB+SVM, ORB+BOW+SVM
and SIFT+BOW+SVM is not statistically significant, although the three methods signifi-
cantly outperform the rest. Figure 3 graphically shows the confidence intervals overlap-
ping. The PCA and FLD algorithms perform similarly using the classical KNN imple-
mentation. Notice that ORB+KNN underperformed these four approaches. We conjec-
ture that the current OpenCV implementation uses approximate nearest neighbor search
(FLANN [30]), which might obtain less accurate NNs.

Table 2 shows the mean time consumed by each method. Experiments were per-
formed on a regular computer (intel i3, 8Gb RAM, Linux OS, Python 2.7). Notice that
ORB features are the faster to compute, providing real time classification of the tags.
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Figure 3. Boxplot of accuracy of each tested algorithm.

Figure 4. Normalized confusion matrix of each tested algorithm.

Approaches relying on the KNN algorithm tend to be slower, given the need to store and
search on the full database of training samples. These methods could be considerably
speeded up by using editing and prototype selection algorithms.

3. Discussion

Discriminant local descriptors as ORB or FLD outperform the rest in the classification
task. Notice that ORB features are computed using specifically designed tests to differ-



Figure 5. Examples of misclassified shapes in multiple situations.

entiate the classes in the training set. Figure 4 depicts the confusion matrices of each
method, and ORB descriptors perform uniformly along the different classes. Only resid-
ual confusions are found among circle and triangle classes. SIFT and ORB with KNN
tend to confuse circle and triangle. This fact is justified by the detection of key points in
the border region of the tags and the absence of salient points on the straight edges, which
might suggest a defective implementation design of the triangular shape. The black bor-
der in these tags is insufficient to facilitate the keypoints detection. Figure 5 illustrates
several misclassified samples. Notice the strong out-of-plane rotations, deformations due
to water flowing, and the extreme illumination conditions present in the images.

4. Conclusions

In this paper we introduce the use of local descriptors in the automated monitoring of
Nephrops norvegicus behavior. We propose a complete set up to record and extract in-
frared images from a experimental set up. Our proposal evaluates the application of state-
of-the-art computer vision methods to the detection of especially designed tags placed
in the animal’s cephalothoraxes. The use of discriminant local descriptors (particularly
ORB) outperform the rest of the methods, and allows a real time detection of the tags
with an accuracy close to the human performance (above 99%). We plan as a future work
to use more complex deep learning techniques to further improve the accuracies on the
tag detection, and extend the work to the detection of the position of the animal’s limbs
and head, as a previous stage to animal’s interaction and behavior modeling. In addition,
we propose the possibility of changing tags shape and colors order, using the white color
to background and the black color to the shape, given that the animal color in IR light
is white. We think that this fact could increase the visual differences between tags and it
will make possible to increase their number to identify more than four individuals. The
proposed code and database will be made publicly available.
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