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We analyze the feasibility of a cheap eye-tracker where the hardware consists of a
single webcam and a Raspberry Pi device. Our aim is to discover the limits of such a
system and to see whether it provides an acceptable performance. We base our work
on the open source Opengazer (Zielinski, 2013) and we propose several improvements
to create a robust, real-time system. After assessing the accuracy of our eye-tracker
in elaborated experiments involving 18 subjects under 4 different system setups, we
developed a simple game to see how it performs in practice and we also installed
it on a Raspberry Pi to create a portable stand-alone eye-tracker which achieves
1.62° horizontal accuracy with 3 fps refresh rate for a building cost of 70 Euros.
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Introduction

Recent advancements in eye-tracking hardware re-
search have resulted in an increased number of avail-
able models that have improved performance and that
provide easier setup procedures. However, the main
problem with these devices continues to be the scal-
ability since their price and the required expertise for
operation make them infeasible at the large scale.

These latest commercial models provide great accu-
racies (between 0.1 and 1°) at high frequencies (over
100Hz); however, in situations where such accuracies
are not necessary and such frequencies are irrelevant,
their high prices make them not a suitable choice. In
this work, we aim to build a cheap, open source al-
ternative that works on a hardware setup common in
consumer environments: a standard webcam and an
electronic device display. We believe that a system that
provides comparable performance at an acceptable fre-
quency will enable many applications on devices rang-
ing from computers to tablets and smartphones.

We build our eye-tracker on top of the open source
eye-tracker Opengazer (Zielinski, 2013), and our con-
tributions are aimed at making the system more robust
and increasing its performance. Our approach holds a
good trade-off between robustness and real-time per-
formance. Moreover, we provide the necessary tools to
analyze the obtained results so that the assessment of
accuracy will be easier for users.

This work was supported in part by the Spanish
Gov. grants MICINN TIN2009-10435 and Consolider 2010
MIPRCV, and the UAB grants.

Method
The components of the software can be seen in Fig-

ure 1. The original system requires at least 4 facial
feature points chosen manually on subject’s face and
it employs a combination of optical flow (OF) and 3D
head pose based estimation for tracking them. The im-
age region containing one of the eyes is extracted and
used in calibration and testing. In calibration, the sub-
ject is asked to look at several target locations on the
display while image samples are taken and for each
target, an average eye image is calculated to be used as
input to train a Gaussian process (GP) estimator. This
estimator component maps the input images to display
coordinates during testing.

Our first contribution is a programmatic point selec-
tion mechanism to automate this task. Then we pro-
pose several improvements in the tracking component.
We finish the work on the blink detector to use these
detections in other components. In calibration, we pro-
pose a procedure to assess and eliminate the training
error. For the gaze estimation component, we try to em-
ploy a neural network method (Holland & Komogort-
sev, 2012). In the following subsections, we give the de-
tails of these contributions and talk about their effects
on system performance in the discussion section.

Point Selection
Our contribution in the automation of the point se-

lection mechanism aims at removing the errors due to
operation mistakes. Moreover, it provides a standard-
ized technique which increases the system’s robust-
ness. It employs a combination of Haar cascade de-
tectors (Castrillón-Santana, 2012; Hameed, 2012), ge-
ometrical heuristics and a novel eye-corner detection
technique. First, a cascade is used to detect the region
containing both eyes and then the novel method de-
tects the outer eye-corner points (Figure 2(a)). Here, the
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Figure 1. The pipeline of the eye-tracker and our contributions on top of the base code

proposed method extracts all corner points inside the
ROI using Harris detector, and calculates the average
corner coordinates in the left and right half of the re-
gion. These two points are considered as approximate
eye centers and the outer corner points are chosen on
the line that passes through them. As we only search a
point around the eye corner that is stable enough, we
do not make more complex calculations and we simply
choose the eye corner points at a predefined distance
(1/3 of the distance between two centers) away from the
center point approximates.

After the eye corners are selected, we search the nose
in a square region below them. When the Haar cascade
returns a valid detection —as in the inner rectangle in
Figure 2(b)—, the two nasal points are selected at fixed
locations inside this area. The algorithm continues in a
similar way for the mouth and eyebrow feature points.

Point Tracking

The point tracking component of the original system
uses a combination of optical flow (OF) and 3D head
pose based estimation. Optical flow calculations are
done between the current camera image and the pre-
vious image. This methodology results in the accu-
mulation of small tracking errors and causes the fea-
ture points to deviate vastly from their original posi-
tions after blinking, for instance. In order to make our
eye-tracker more robust to these problems, we modi-
fied the tracking component so that OF is only calcu-
lated against the initial image saved while choosing the
feature points. Moreover, if we still lose track of any
point, we directly use the estimate calculated using the
3D head pose and correctly tracked points’ locations.

(a) Eye corners (b) Nose tips (c) Mouth corners (d) Eyebrow corners
Figure 2. Sequence of facial feature point selection
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Blink Detection
The blink detector is an unfinished component of

Opengazer and we continue with analyzing it and
making the necessary modifications to get it running.
We believe that blinks have an effect on performance
and by skipping them during training, we can remove
the errors they introduce.

The blink detector is designed as a state machine
with initial, blinking and double blinking states. The
system switches between these, depending on the dif-
ferences in eye images that are extracted as described in
the previous section. These differences are calculated
as the L2 norm between the eye images in consecutive
frames. When the difference threshold for switching
states is exceeded during several frames, the state is
switched to the next state and a blink is detected.

We built on this structure and completed the rules
for the state switching mechanism. Moreover, we
added a state reset rule that resets the system to the
initial state whenever the threshold criteria is not met
at a certain frame.

Calibration
We propose a modification in the calibration part so

that the images acquired during blinks are no longer in-
cluded in the calibration procedure. This is crucial be-
cause these frames can alter the average eye images cal-
culated during calibration and therefore are reflected as
noise in the calibration procedure. However; as these
frames are no longer available for calibration, we have
to increase the time each target point is displayed on
the screen in order to provide the system with enough
samples during calibration.

Another improvement that we propose is the correc-
tion of calibration errors as illustrated in Figure 3:

Figure 3. The drift correction moves the estimates (small
signs) towards the actual target (larger signs). The training er-
ror direction (longer line) and testing error direction (shorter
line) show the correlation.

Here, red triangles on the left side correspond to
a target point displayed on the screen and the corre-
sponding gaze estimations of our system, one for each
camera frame. The larger symbol denotes the actual
target, whereas the smaller ones are the estimates. The
shorter line connects the average estimation and the
target location. Therefore, the length and direction of
this line gives us the magnitude and direction of aver-
age testing error. Apart from these symbols, the longer
line that starts from the target denotes the direction of

the calibration error. However, it should be noted that
in order to easily observe the direction, the magnitude
of the calibration error is increased by a factor of 5. In
this figure, we can see the correlation between the cal-
ibration error and average testing error, therefore we
propose a correction method. The final effect of this
technique can be seen on the right side, where the esti-
mates are moved closer to the actual target point.

To calculate the calibration errors, we store the
grayscale images which are used to calculate the aver-
age eye images during calibration. Therefore, we save
several images corresponding to different frames for
each target point. After calibration is finished, the gaze
estimations for these images are calculated to obtain
the average gaze estimation for each target. The dif-
ference between these and the actual target locations
gives the calibration error.

After the calibration errors are calculated, we con-
tinue with correcting these errors during testing. We
employ two multivariate interpolators (Wang, Moin, &
Iaccarino, 2010; MIR, 2012) which receive the average
gaze estimations for each target point as inputs and are
trained to output the actual target x and y coordinates
they belong to. The parameters that we chose for the
interpolators are: approximation space dimension = 2,
Taylor order parameter = 6, polynomial exactness pa-
rameters = 1 and safety factor = 50. After the interpo-
lator is trained, we use it during testing to remove the
effects of calibration errors. We pass the currently cal-
culated gaze estimate to the trained interpolators and
use the x and y outputs as the corrected gaze point es-
timation.

Gaze Estimation

Originally, gaze estimates are calculated using the
image of only one eye. We propose to use both of the
extracted eye images to calculate two estimates. Then,
we combine these estimations by averaging.

We also consider the case where the GP interpola-
tor used here is completely substituted. Neural net-
work (NN) methods constitute a popular alternative
for this purpose. There exist recent implementations
of this technique (Holland & Komogortsev, 2012). In
the aforementioned work, an eye tracker using NNs to
map the eye image to gaze point coordinates is imple-
mented and is made available (Komogortsev, 2012).

We incorporated the NN method in our system
by making use of the Fast Artificial Neural Network
(FANN) library (Nissen, 2003) and created a similar
network structure, and a similar input-output system
as the original work. Our neural network had 2 levels
where the first level contained 128 nodes (1 for each
pixel of 16× 8 eye image) and the second level con-
tained 2 nodes (one each for x and y coordinates). We
scaled the pixel intensities to the interval [0, 1] because
of the chosen sigmoid activation function.
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Figure 4. Placement of the components in the experimental
setup and the geometry involved in error calculation

(a) iPad setup (b) Other setups
Figure 5. Target positions on the display for different setups

Other Contributions

Moreover, we propose a method to normalize the ex-
tracted eye images in order to correct the possible illu-
mination variations in the environment. In this tech-
nique, we calculate the mean and standard deviation
of pixel intensities in the extracted image and map the
intensity distributions to a standardized distribution
where pixel intensity mean is 127 and variance is 50.

Experimental Setup

In this section, we give the details of the experimen-
tal setup we created to test the performance of our ap-
plication. Variations in the setup are introduced to cre-
ate separate experiments which allow us to see how
the system performs in different conditions. Figure 4
shows how the components of the experimental setup
are placed in the environment.

The stimuli display faces the subject and it is raised
by a support which enables the subject to face the cen-
ter of the display directly. The camera is placed at the
top of this display at the center (A), and it has an alter-
native location which is 19.5 cm towards the left from
the central location (B). An optional chinrest is placed
at the specific distance of 80 cm away from the display,
acting as a stabilizing factor for one of the experiments.

By introducing variations in this placement, we
achieve several setups for several experiments which
test different aspects of the system. These setups are:

Standard setup: Only the optional chinrest is removed
from the setup shown in Figure 4. Subject’s face
is 80 cm away from the display. The whole screen
is used to display the 15 target points one by one.

Extreme camera placement setup: This setup is simi-
lar to the previous one. The only difference is
that the camera is placed at its alternative loca-
tion which is 19.5 cm shifted towards the left. The
purpose of this setup is to test how the position of
the camera affects the results.

Chinrest setup: A setup similar to the first one. The
only difference is that the chinrest is employed.
This experiment is aimed at testing the effects of
head pose stability in the performance.

iPad setup: This setup is used to test the performance
of our system simulating the layout of an iPad on
the stimuli display. This background image con-
tains an iPad image where the iPad screen corre-
sponds to the active area in the experiment and is
shown in a different color (see Figure 5(a)). The
distance of the subject is decreased to 40 cm, in
order to simulate the use-case of an actual iPad.
The camera stays in the central position; and it is
tilted down as seen necessary in order to center
the subject’s face in the camera image.

We also analyze the effect of different camera resolu-
tions in these setups. This is done in an offline manner
by resizing the original 1280×720 image to 640×480.

The error in degrees is calculated with the formula:

Err = abs(arctan(DxC/DEC)−arctan(Dx′C/DEC))

where, x is the target, x′ is the estimate, C is the dis-
play center and E is the face center point. The variables
DxC, DEC and so on denote the distances between the
specified points. They are converted from pixel values
to cm using the dimensions and resolution of the dis-
play.

Results
In this section, we present the results which show

the effects of the proposed changes on the performance.
To achieve this, we reflect our changes on the original
Opengazer code one by one and compare the results for
all four experiments. We compare 6 different versions
of the system which denote its certain phases:

1. [ORIG] Original Opengazer application + auto-
matic point selection

2. [2-EYE] Previous case + average estimate of 2 eyes
3. [TRACK] Previous case + tracking changes
4. [BLINK] Previous case + excluding blinks during

calibration
5. [CORR] Previous case + training error correction
6. [NN] Previous case + neural network estimator
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Table 1
Errors in degrees for 1280×720 camera resolution

Standard Extreme Chinrest iPad
Version Hor. (σ) Ver. (σ) Hor. (σ) Ver. (σ) Hor. (σ) Ver. (σ) Hor. (σ) Ver. (σ)
ORIG 2.07 (1.69) 1.73 (1.04) 2.22 (1.68) 2.07 (0.77) 1.35 (0.63) 1.61 (0.71) 2.87 (1.66) 2.49 (0.91)
2-EYE 1.94 (2.14) 1.67 (1.07) 1.70 (1.30) 1.82 (0.75) 1.18 (0.82) 1.46 (0.54) 2.54 (1.64) 2.46 (1.05)
TRACK 1.77 (1.52) 1.50 (0.80) 1.88 (1.15) 1.86 (0.66) 1.27 (0.85) 1.48 (0.56) 2.32 (1.29) 2.17 (0.75)
BLINK 1.78 (1.53) 1.49 (0.80) 1.89 (1.14) 1.88 (0.68) 1.27 (0.85) 1.47 (0.56) 2.31 (1.30) 2.14 (0.77)
CORR 1.68 (1.56) 1.43 (0.80) 1.76 (1.15) 1.78 (0.67) 1.14 (0.79) 1.36 (0.53) 2.15 (1.32) 2.02 (0.76)
NN 5.33 (2.83) 2.09 (0.89) 4.93 (2.48) 2.15 (0.46) 4.19 (1.03) 2.12 (0.64) 5.33 (2.83) 2.09 (0.89)

Table 2
Standard setup errors in degrees 640×480 resolution

Standard
Version Hor. (σ) Ver. (σ)
ORIG 1.82 (1.40) 1.56 (0.81)
2-EYE 1.56 (1.28) 1.48 (0.86)
TRACK 1.73 (1.37) 1.58 (0.78)
BLINK 1.73 (1.37) 1.58 (0.76)
CORR 1.62 (1.40) 1.50 (0.77)
NN 5.12 (2.26) 2.26 (0.92)

In all versions, the facial feature points are selected
automatically by the method described in previous sec-
tions and gaze is not estimated during blinks. For each
experiment, average horizontal and vertical errors for
all subjects and all frames are given in degrees and the
standard deviation is supplied in parentheses.

Table 1 shows the progressive results of our eye-
tracker’s performance for different versions of the sys-
tem. Each result column denotes the horizontal or ver-
tical errors for a different experimental setup. Moving
from top to bottom in each column, the effects of our
changes can be seen for a single error measure of an
experimental setup. Along each row, the comparison
of errors for different setups can be observed. Table 2
show the performance values of the system in the stan-
dard setup with the lower resolution camera. These re-
sults can be compared to the high resolution camera’s
results as seen in Table 1 to see how the camera res-
olution affects the errors in the standard setup. The
original application’s results (ORIG) and our final ver-
sion’s results (CORR) are shown in boldface to enable
fast comparison.

Discussion

Considering the 1.68° horizontal and 1.43° vertical
errors of the final system in the standard experimental
setup, we conclude that we have improved the origi-
nal system by 18% horizontally and 17% vertically. As
seen in Table 2, the performance difference in the same

experiment done with VGA cameras (11% horizontally,
4% vertically) is comparably lower than the first case,
which shows us that our contributions in this work ex-
hibit more robust performance with the increased im-
age quality. From another aspect, it means that better
cameras will favor the methods we proposed in terms
of robustness.

One interesting aspect of these results is that with
the increased camera resolution, the original applica-
tion shows a worse performance. We believe this is
caused by the optical flow algorithm used in the track-
ing component. The increased detail in the images af-
fect the tracking and the position of the tracked point
may vary more compared to the lower resolution im-
age. This, combined with the accumulated tracking er-
ror of the original application, result in a higher error
rate. However, it is seen that the final version of our
eye-tracker (CORR) recovers most of this error.

From the extreme camera placement setup results
seen in Table 1, we see that shifting the camera from
the top center of the display decreased the performance
by 5% horizontally and 24% vertically. Here, the per-
formance loss is mainly caused by the point tracking
component. From such a camera angle, the farther eye
corner point may be positioned on the face boundary,
making it hard to detect and track. In order to tackle
this problem, a 3D model based face tracking algorithm
may be employed.

In the third experimental setup, we show that the
use of a chinrest improves the performance by 32%
horizontally compared to the standard setup. Also the
variance among subjects is reduced, which increases
the reliability of this setup for experimental purposes.
We also observed that in the vertical errors, this differ-
ence is not as significant.

The results for the iPad setup may be deceiving, be-
cause here actually the errors in pixels are lower; how-
ever, as the distance of the subject is used in the calcula-
tion of errors in degrees, the angular errors are higher.
Each 1° error in other setups corresponds to twice as
many pixels on the screen compared to a 1° error in
the iPad setup. Using this rule of thumb, we can see
that the iPad case results in lower error rate in pixels
compared to even the chinrest setup.
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We observe that excluding the blink frames from
the calibration process (application version labeled
BLINK) do not have a perceivable effect on the perfor-
mance. We argue that the averaging step in the calibra-
tion procedure already takes care of the outlier images.
The other component that failed our expectations is the
neural network estimator, which performed up to 2.5
times worse than the Gaussian process estimator. We
believe this is due to eye images extracted by our sys-
tem. Currently the feature point selection and tracking
mechanism allows small shifts in point locations and
therefore the extracted eye images vary among sam-
ples. The GP estimator takes care of this problem dur-
ing the image averaging step; however, the NN estima-
tor may have problems when the images vary a little
in the testing phase. In order to resolve this problem, a
detection algorithm with a sub-pixel accuracy may be
used to better estimate the eye locations.

Conclusion
Analyzing the changes in errors due to our contri-

butions, we see that mostly we are increasing the per-
formance. Our automatic point selection technique en-
abled us create an easy to use application, removing
errors caused by wrong operation. The changes in the
tracking component have proved to be useful in in-
creasing the robustness. The experiments showed that
the final system is more reliable in a variety of scenar-
ios. The blink detection component is mostly aimed at
preparing the eye-tracker to real world scenarios where
the incorrect estimations during blinks should be sep-
arated from meaningful estimates. The proposed er-
ror correction algorithm helped the system better esti-
mate gazes around the borders of the monitor. Apart
from these experimental performance assessments, our
work resulted in three additional valuable outputs:

A Portable Eye-Tracker: We installed our system on a
Raspberry Pi as seen in Figure 6(a) and achieved
a cheap (70 Euros) alternative to commercial eye-
trackers. This system can be used as a separate in-
put device to calculate and send the gaze point to
the main computer. For experimental purposes,
the necessary results analysis tools are also in-
cluded in the device. The device has the same fi-
nal error rates as in the experimental results (1.62°
horizontally and 1.50° vertically for 640×480 res-
olution) and has a 3 fps update rate. By optimiz-
ing the code and using a faster camera, we expect
to increase the refresh rate of the system.

An Eye-Tracking Video Dataset: The videos recorded
during the experiments are gathered in a dataset
of 12 subjects and 4 different experiment cases
(subjects who have not given permission are ex-
cluded) (Ferhat & Vilariño, 2013).
The annotations for the videos denote on which
frame the training and testing phase starts and

the ground truth gaze points which are basically
the positions of the target marker on the display
at a given frame.

A Simple Game: We created a simple game where the
users control a cursor by their gaze in order to
find a frog in a cluttered environment. Once they
fix their gaze on the frog’s position, it is trans-
ported to another part of the display for the next
episode. A demonstration of the game can be
seen in Figure 6(b).

(a) Portable eye-tracker (b) The sample game
Figure 6. Other outputs of our work
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