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Abstract. We address the synchronization of a pair of videos sequences
captured from moving vehicles and the spatial registration of all the
temporally corresponding frames. The final goal is to fuse the two videos
pixel–wise and compute their pointwise differences. Video synchroniza-
tion has been attempted before but often assuming restrictive constraints
like fixed or rigidly attached cameras, simultaneous acquisition, known
scene point trajectories etc. which to some extent limit its practical appli-
cability. We intend to solve the more difficult problem of independently
moving cameras which follow a similar trajectory, based only on the fu-
sion of image intensity and GPS data information. The novelty of our
approach is the probabilistic formulation and the combination of ob-
servations from these two sensors, which have revealed complementary.
Results are presented in the context of vehicle pre–detection for driver
assistance, on different road types and lighting conditions.

1 Introduction

Consider the following scenario. A vehicle is driven twice through a certain cir-
cuit, following approximately the same trajectory. Attached to the windshield
screen, a forward facing camera records one video sequence for each of the two
rides. Imagine that, somehow, we are able to substract pixelwise the two se-
quences. That is, for each frame of, say, the first sequence, we get to know which
is the corresponding frame in the second sequence, in the sense of being the
camera at the same location. In addition, suppose we succeed in spatially align-
ing every such pair of frames, so that they can be properly substracted to build
the frames of the difference video. What would it display ? Moving objects and
objects present in only one of the video sequences, like pedestrians and on road
vehicles, provided ambient illumination was similar enough and these objects
exhibit sufficient contrast with respect to their ”background” (what’s behind
them) in the other sequence.

Let So, Sr be two video sequences no and nr frames long, respectively. Sr

denotes the reference sequence and So the ’observed’ video, which is contained
within Sr. Video alignment or matching requires the simultaneous correspon-
dence of two image sequences both in the time and space dimension. The first
part, which we refer to as synchronization, aims at estimating a discrete map-
ping c(to) = tr for all frames to = 1 . . . no of the observed video, such that Sr(tr)
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2 M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion

maximizes some measure of similarity with So(to), among all frames of Sr. In
the former scenario, we assume this will happen when the location where Sr(tr)
was recorded is the closest to that of So(to). The second part, registration, takes
all corresponding pairs So(to), S

r(c(to)), to = 1 . . . no and warps frame So(to) so
that it matches Sr(c(to)), according to some difference measure and a spatial
deformation model.

1.1 Previous work

Several solutions to the problem of video synchronization have been proposed in
the literature. Here we briefly review those we consider the most significant. This
is relevant to put into context our work, but also because, under the same generic
label of synchronization, they try to solve different problems. The distinction is
based on the input data and the assumptions made by each method. Table 1
compares them.

The first proposed methods assumed the temporal correspondence to be a
simple constant time offset c(to) = to + β [1,2,3] or linear c(to) = αto + β [4,5],
to account for different camera frame rates. More recent works [6,7] let it be of
free form. Clearly, the first case is simpler since just one or two parameters have
to be estimated, in contrast to a curve of unknown shape.

Concerning the basis of these methods, most of them rely on the existence
of a geometric relationship between the coordinate systems of frames if they
are corresponding: an affine transform [5], a plane–induce homography [4], the
fundamental matrix [3], the trifocal tensor [1], and a deficient rank condition
on a matrix made of the complete trajectories of tracked points along a whole
sequence [7,2]. This fact allows either to formulate some minimization over the
time correspondence parameters (e.g. α, β) or at least to directly look for all pairs
of corresponding frames. Again, the cases in which this geometric relationship
is constant [4,5,7], for instance because the two cameras are rigidly attached to
each other, are easier to solve. Other works [6,1,8,9] address the more difficult
case of independently moving cameras, where no geometric relationship can be
assumed beyond a more or less overlaping field of view.

Each method needs some input data which can be more or less difficult
to obtain. For instance, feature–based methods require tracking one or more
characteristic points along the two whole sequences [4,7,2,3], or points and lines
in three sequences [1]. In contrast, the so–called direct methods are based just
on the image intensity or color [4,6,5] which in our opinion is better from the
point of view of practical applicability.

Like still image registration, video alignment has a number of potential appli-
cations. It has been used for visible and infrared camera fusion and wide baseline
matching [4], high dynamic range video, video mating and panoramic mosaic-
ing [6], visual odometry [9], action recognition [5] and loop closing detection for
SLAM [8].
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This
[2] [4] [1] [7] [3] [5] [6] [9] [8] work

Time constant offset • • •
correspondence linear • •

unconstrained • • • • •
Simultaneous yes • • • •

recording not necessary • • • • • •
Cameras rigidly yes • • • •

attached no • • • • • •

Input Data

point trajectories • • • •
line trajectories •
point features •

images • • • •
images + map/GPS • •
fixed homography •

fundamental matrix • •
Need to trifocal tensor •
estimate deficient rank matrix • •

fixed affine motion field •
variable motion field •

frame similarity • • •

Table 1. Comparison of video synchronization methods.

1.2 Objective

Our goal is to synchronize videos recorded at different times, which can thus
differ in intensity and even in content, i.e., show different objects or actions, up
to an extent. They are recorded by a pair of independently moving cameras,
although their motion is not completely free. For the video matching to be
possible, there must be some overlapping in the field of view of the two cameras,
when they are at the same or close position. Furthermore, we require they follow
approximately coincident trajectories and, more importantly, that the relative
camera rotations between corresponding frames are not too large. Independent
camera motion has the important implication that the correspondence c(t) is of
free form: anyone of the two cameras may stop at any time. Finally, we do not
want to depend on error–free or complete point trajectories, provided manually
or by an ideal tracker. In sum and for the sake of a greater practical applicability,
we are choosing the most difficult settings of the problem among those reviewed
before.

Our motivation for addressing video alignment is to spot differences between
two videos. The envisaged application is the vehicle and pedestrian recognition
from onboard cameras, in the context of driver assistance systems. Specifically,
we intend to perform a sort of pre–detection, that is, to select regions of in-
terest on which supervised classifiers should be applied. One of the difficulties
of such classifiers have overcome is the variability of such objects in size and
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4 M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion

position within the image. This means a large number of windows (typically in
the thousands) have to be processed looking for potential objects. In addition,
recent results with state–of–the art methods like boosting indicate that a fixed,
known background greatly simplifies the complexity of the problem [10]. To our
knowledge, this is a novel approach to the problem. At the moment, our method
just performs an off–line pre–detection, which nevertheless speeds up the manual
selection of positive and negative samples for a classifier. Additionally, and as
a byproduct, video synchronization can be used for vehicle localization. If the
reference sequence has associated positioning data like map coordinates, then
we are already locating the frames of the other one.

Our work is most closely related to [9] (see table 1). However, we differ
from them in the motivation and also in the method. For instance, this need to
compute the fundamental matrix between any potential pair of corresponding
frames (wich are spherical panoramas), as part of a frame similarity measure
and to estimate the camera ego–motion. Like us, they solve the problem by
inference on a Bayesian network, but theirs is a Markov Random Field (MRF)
and inference is approximated whereas we perform exact inference on a Dynamic
Bayesian Network (DBN). Finally, they need as input a map of the camera
trajectory, which is compared with the estimated ego–motion. In contrast, we can
obtain a solution from video data alone or combine them with GPS observations.

2 Video synchronization as an inference problem

We formulate the video synchronization problem as a labelling problem. A list of
no labels x1:no

= [x1 . . . xno
] with xt ∈ {1, ..., nr} has to be estimated, each label

xt is the number of the corresponding frame in Sr to the tth frame of So, that
we denoted as t. To perform that, we rely on the observations available at each
frame (appearance and GPS data). We pose this task as a Bayesian inference
problem, being the desired sequence as the one maximizing p(x1:no

|y1:no
). That

is,

xMAP
1:no

= arg max
x1:no

∈X
p(x1:no

|y1:no
) ,

∝ arg max
x1:no

∈X
p(y1:no

|x1:no
)P (x1:no

) ,

where y1:no
are the observation of frames in So and X is the set of all possible

labellings. Both sequences have been recorded by a vehicle following a trajectory,
provided that the vehicle is just constrained to forward motion, that is, the
vehicle can not reverse its motion direction. Therefore, the sequence of labels
are necessarily to increase monotonically. The prior P (x1:no

) can be factored as

P (x1:no
) = P (x1)

no−1
∏

t=1

P (xt+1|xt) ,

in
ria

-0
03

26
75

6,
 v

er
si

on
 1

 - 
5 

O
ct

 2
00

8



M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion 5

where the constraining of increasing sequence is imposed by defining a label
transition matrix of the form

P (xt+1|xt) =

{

v if xt+1 ≥ xt

0 otherwise
,

where v is a constant that gives equal probability to any label greater or equal
than xt. The prior for the first label of the sequence P (x1) gives the same prob-
ability to all labels in {1, . . . , nr} because So could be any subsequence inside
Sr.

If we also assume that the likelihood of observations y1:no
is independent

given their corresponding label values, then p(y1:no
|x1:no

) factorizes as

p(y1:no
|x1:no

) =

no
∏

t=1

p(yt|xt) .

From these dependencies between variables, it turns out that our problem is
one of maximum a posteriori (MAP) inference in a DBN (actually is a hidden
Markov model). Hence, we can apply the well-known Viterbi algorithm to exactly
infer xMAP

1:no
.

We have considered the use of different observation types, leading to the four
DBNs represented in Fig. 1. Square nodes represent discrete variables, while
the rounded ones correspond to continuous variables. Shaded nodes denote ob-
served variables. The conditional dependency between variables is represented
by solid lines while dashed lines represent switching dependency. The switching
dependency is a relation between nodes that express that a variable’s parents
are allowed to change depending on the current value of other parents. Notice
that observations coming from different sensors can be assumed independent if
they are not related physically. In our case, we use this mechanism to model that
the GPS receiver does not provide raw GPS fix for all the frames in a sequence
(Fig.1-c). Only when a videoframe has a raw GPS fix associated (i.e. ot = 1)
the node gt is connected to its parent. Otherwise, the effective graphical model
corresponds to the one in Fig. 1-a.

The four DBN have been proposed in order to assess the contribution of each
observation separately (appearance and GPS data) and their combination. Note
that the combination of GPS with the frame appearance can be only done every
25 frames, because of the GPS receiver rate, which have GPS information or
estimate him for the entire sequence. The likelihood probabilities of the DBNs
are explained below.

2.1 Appearance likelihood density

Let Fo
t and Fr

xt
denote the tth and xth

t frames of the observed and reference
videos, respectively. The appearance at refers to the image description used in
the definitions of the observation likelihood p(at|xt), that is, the probability of
(t, xt) to be corresponding frames given Fo

t is represented by the feature vector
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6 M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion

Hidden variable

x : frame id

Observed variables

a : frame appearance

g : GPS coordinates

     (x,y) in UTM

h : GPS HDOP

o : GPS availability

      (switching parent)

s : smoothed GPS coordinates

     (x,y) in UTM
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Fig. 1. Graphical model representation of the different approaches used to align
videos. a) Using appearance. b) Using smoothed GPS coordinates. c) Combin-
ing appearance with GPS fixes when available. d) Combining appearance with
smoothed GPS coordinates.

at and Fr
xt

by an analogous vector axt
. The adopted description must be simple

to compute and compare, since we will need to calculate p(at|xt) for all possible
frame pairs, ı.e., millions of times of sequences of just a few minutes long. At the
same time, we want the probability to be high when frames are similar, in spite
of slight camera rotations and translations, contrast or lighting changes and, of
course, when they show different background objects like vehicles. To this end
we propose to downsample the image at one fourth of resolution, compute the
gradient orientation at each pixel and stack all the columns into a single vector
at. The scalar product < at,axt

> can be seen as a simple similarity measure.
The appearance likelihood is then defined as

p(at|xt) = Φ(< at,axt
>; 1, σ2

a) ,

where Φ(v; µ, σ2) denotes the evaluation of the Gaussian pdf N (µ, σ2) at v. The
higher likelihood is hence the closer < at,art

> to 1. We have set σa = 0.5 in
order to give a significant likelihood only to frames whose appearance vectors
form an angle less than 5 degrees, approximately.

2.2 GPS likelihood densities

The other observation of our DBNS is the GPS data which are acquired from a
vehicle equipped with a Keomo 16 channel GPS receiver with Nemerix chipset.
The GPS device localizes the vehicle in geospatial coordinates once per second,
hence providing GPS data every 25 frames. The GPS location is extracted from
the GPGGA message of the NMEA protocol, since it provides the horizontal
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dilution of precision [11] (HDOP) of the given location. This HDOP value h is
related to the location uncertainty. After converting the GPS location to cor-
responding 2D coordinates g = [x y]T in the Universal Transverse Mercator
(UTM) system, we combine h with a user equivalent range error [11] sensible for
our receiver (in our case, σ = 1.5 meters) to determine the Gaussian distribution
N (g,R = (hσ)2I) that encodes the available knowledge in the vehicle location
uncertainty (I denotes the identity matrix). Hence, the raw sensor information
available for a given frame S(t) of a sequence is the acquired image itself, a
variable ot ∈ {0, 1} whose value is 1 when it has an associated GPS fix, and the
distribution N (gt,Rt) only if ot = 1.

The GPS information is available only in 4% of the sequence. However, for
the rest of frames there is still some knowledge that can be exploited, since a car
follows a regular trajectory. Then, in order to estimate an observation to each
frame, we apply a Kalman smoother to process the available GPS fixes N (gt,Rt)
and interpolate the lacking information N (st,Σt) (s stands for smoothed GPS
information). To do so, we model the dynamical behaviour of the vehicle to
propagate the GPS information to the frames where it is not available. We find
out that a model of constant acceleration gives a good approximation of the
dynamics. This can be expressed by the third order autoregressive model

gt = 3gt−1 − 3gt−2 + gt−3 + wt ,

where wt is a stochastic disturbance term N (0,Qt) that accounts for the model
inaccuracies. In our experiments, we set Qt = 2.25e−4I, which means that the
model imprecision after one second (i.e, 25 frames) is below 0.75 meters with
0.95 probability . We combine this model with the GPS observations by means of
the Rauch-Tung-Striebel Kalman Smoother equations [12], using the prediction
of the GPS location in frames where no GPS fix was available. As results, a
Gaussian distribution constraining the GPS location at each frame is finally
obtained.

For the case of GPS observations, notice that defining p(gt|xt) or p(st|xt)
implies specifying them for any value of xt, and this requires having GPS infor-
mation in all the frames of Sr. Hence, both likelihood terms are defined using
the smoothed GPS estimations N (sr,Σr) of the Sr frames. Like in the case of
a, the likelihood of the observed GPS data (whether raw or smoothed) could be
defined as the evaluation of Φ(v; sr

t ,Σ
r
t ), where v would correspond respectively

to gt of st of the observed frame. However, the GPS data in So frames does not
limit to just a location, but a Gaussian distribution of this location. Hence, it is
more proper to evaluate its likelihood taking all the feasible GPS locations into
account. That is, compute the expected value of its likelihood according to the
distribution of its associated GPS data. For instance, for the case of smoothed
GPS coordinates, this corresponds to

E[p(st = so|xt)] =

∫

Φ(s; sr
t ,Σ

r
t )Φ(s; so,Σo)ds ,
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8 M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion

i.e., it is the integral of the product of two Gaussians. Since this product equals to
an unnormalised Gaussian, computing its integral is just determining the inverse
of its missing normalization constant, which is obtained from the parameters of
the multiplied Gaussians from the following expression [13]

E[p(st = so|xt)] =
1

2π
√

|Σr
t + Σo|

exp

(

−
1

2
(sr

t − so)T (Σr
t + Σo)−1(sr

t − so)

)

.

3 Registration

The result of the synchronization is a list of pairs of corresponding frame num-
bers (t, xt), t = 1 . . . no. Ideally, for each such pair the camera was at the same
position. In that case, only the camera pose may be different. Let the rotation
matrix R express the relative orientation of the camera for one such pair. It
can be seen then that the coordinates of the two frames corresponding frames
Fo

t ,F
r
xt

are related by the homography H = KRK−1, where K = diag(f, f, 1),
f being the camera focal length in pixels. Let the 3D rotation R be parametrized
by the Euler angles Ω = (Ωx, Ωy, Ωz) (pitch, yaw and roll respectively). Under
the assumptions of these angles being small and the focal length being large
enough, the motion vector of this homography can be approximated by the fol-
lowing model [14], which is quadratic in the x and y coordinates but linear in
the parameters Ω:

u(x;Ω) =

[

−xy
f

f + x2

f
−y

−f − y2

f
xy
f

x

]





Ωx

Ωy

Ωz



 (1)

R and consequently Ω may be different for each pair, since the cameras have
moved independently. Therefore, for each pair of frames we need to estimate
the parameters Ω that minimize some registration error. The chosen error mea-
sure is the sum of squared linearized differences (i.e., the linearized brigthness
constancy) that is used by the additive forward extension of the Lucas–Kanade
algorithm [15],

err(Ω) =
∑

x

[

Fr
xt

(x + u(x;Ω)) − Fo
t (x)

]2
(2)

where Fo
t is the template image, Fr

xt
is the image warped onto the coordinate

frame of the template. The previous minimization is performed iteratively until
convergence. In practice, we can not directly solve for Ω because a first order
approximation of the error in Eq. (2) can be made only if the motion field
u(x;Ω) is small. Instead, Ω is successively estimated in a coarse–to–fine manner.
A Gaussian pyramid is built for both frames and at each resolution level Ω is
re–estimated based on the value of the previous level. For a detailed description
we refer the reader to [15].
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4 Results

Four video pairs have been aligned and substracted. They were recorded on
different road types: highway, rural and urban roads, so that they exhibited
an increasing amount of ’structure’. Rural sequences contain less distinct land-
scape features, whereas urban sequences are populated by a number of buildings,
parked cars and lamp posts on the left and right sides of the image. In addition,
two urban sequence pairs were recorded at different places, one at day and an-
other at night, to test very different lighting conditions. Not only the amount of
content and lighting varied, but the GPS reliability was also different due to the
proximity of tall buildings in the daytime urban sequence.

a) b)

Fig. 2. Synchronization error for the rural sequence. a) detail of ground truth
versus synchronization result, on a background proportional to frame similarity
(the darkest, the higher) b) normalized histogram of the synchronization error.

In order to quantitatively assess the performance of the temporal alignment,
we manually obtained the ground–truth for three of the video pairs: urban day-
time, urban night and rural, which are 1550, 1020 and 325 frames long, re-
spectively. For one out of every five frames t of the observed video we tried to
select the corresponding frame xt in the reference video and perform a linear
interpolation inbetween. To do it, mainly the position and size of the closest
scene objects were taken into account, like lane markings, traffic signs, other
cars etc. This decision, however, often proved difficult to make because the ve-
hicles undergo lateral and longitudinal relative displacements to which camera
pose variations are added. Therefore, we ended up by selecting not a single frame
number but an interval [lt, ut] always containing the true corresponding frame.
This can be appreciated in Fig. 2a. The width of the ground truth intervals
obtained manually is typically 3 to 6 frames.

Accordingly, the synchronization error for a given pair (t, xt) is

in
ria

-0
03

26
75

6,
 v

er
si

on
 1

 - 
5 

O
ct

 2
00

8



10 M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion

err(t, xt) =







0 if lt ≤ xt ≤ ut

lt − xt if xt < lt
xt − ut if xt > ut

(3)

At first sight, the total synchronization error calculated by summing or av-
eraging all the individual errors seems to be sensible measures of performance.
However, their distribution is more informative because it tells us how much
frames are at a given distance of their ground truth, for all distances. Fig. 2b
shows a representative error distribution, in the sense that the error is usually
low, although some outliers exists. The problem with this representation is that
it is rather complex since we need then to compare histograms. A more compact
graphical representation, the boxplot diagram, has been choosen. Fig. 3 shows
the boxplot representation of the synchronization error for three sequence pairs.
Within each plot, the result for the four DBNs are represented (from left to right:
only appearance, only smoothed GPS, appearance plus raw GPS and appear-
ance plus smoothed GPS observations). Thus, we can compare the performance
of the synchronization step for the different sequences and graphical models, and
assess the contribution of each type of observation.

App GPS AppRawGPS AppGPS
0

0.5

1

1.5

2

2.5

App GPS AppRawGPS AppGPS
0

5

10

15

App GPS AppRawGPS AppGPS
0

0.5

1

1.5

2

2.5

a) b) c)

Fig. 3. Boxplot representation of the synchronization error. Outliers are only
partially represented. From left to right: rural, urban at daytime and urban at
night.

X
X

X
X

X
X

X
X

X
Scenario

Method
Frame Appeance Smoothed GPS AppRawGPS AppGPS

Rural (1550) 65% (1022) 84% (1302) 66% (1032) 85% (1320)

Urban daytime (1020) 44% (449) 33% (341) 46% (474) 58% (601)

Urban nightime (325) 73% (238) 58% (189) 73% (238) 79% (258)

Table 2. Percentage of frames inside the ground truth interval. In brackets, the
number of frames.

In plots 3a and 3c we see that for the rural and nighttime urban pairs,
the median is equal to zero and the third quartile is at most 1 for the four

in
ria

-0
03

26
75

6,
 v

er
si

on
 1

 - 
5 

O
ct

 2
00

8



M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion 11

types of observations. In other words, there is no error at half of the frames
and it is one frame or less at 75% of the sequence. Results are slightly worse
on the daytime urban pair. There are two reasons for that. First, in this se-
quence some tall buildings close to the road degrade the GPS data, dragging
the correspondence curve in the wrong direction at some places. Second, these
same buildings give rise to a repetitive pattern in the video sequences which
complicates the image comparison. However, the combination of image inten-
sity (appearance) and smoothed GPS observations still achieves a small error,
outperforming the three other types of observations. This happens also in the
two other video pairs, suggesting that they are somehow complementary. Ta-
ble 2 confirms the former observations, now with regard the number of frames
correclty synchronized. This is a more restrictive condition which gives an idea
(close to a lower bound) of how much frames will be correctly registered and
substracted. Recall that our final goal is not the synchronization of video pairs
but their pointwise substraction in order to spot differences of potential inter-
est. As an illustration of the utility of this idea, we have addressed the problem
of vehicle detection. Once a video pair has been synchronized and the corre-
sponding frames registered, they are substracted and a video of the absolute
value of the difference is built. On each frame, we perform a simple threshold-
ing. Then, only regions larger than a certain area and with an eccentricity less
than a fixed theshold are kept. Their bounding boxes are the regions of vehicle
pre–detection, like in fig. 4. Still pictures are a poor representation of the results.
Please visit www.cvc.uab.es/ADAS/projects/sincro/ECCV08Workshop/where
the original, fusion, difference and pre–detection videos can be visualized.

a) b) c)

Fig. 4. Video alignment results: a) fusion, b) absolute difference, c) pre–
detection of vehicles. Results in video form can be properly viewed at
www.cvc.uab.es/ADAS/projects/sincro/ECCV08Workshop/.

5 Conclusions

In this paper, we have introduced a novel approach to the video alignment prob-
lem. Our approach relies on a graphical model formulation in order to deal with
any temporal correspondence between sequences, and it combines observations
from different sources. These observations, frame appearance and GPS data,
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12 M2SFA2 2008: Workshop on Multi-camera and Multi-modal Sensor Fusion

have been formulated in a probabilistic framework to introduce them in the
graphical model properly, i.e. the raw GPS observations. We also have proposed
a novel measure of alignment and the generation of ground truth to compare
properly the methods proposed. This measure indicates that the combination of
frame appearance and smoothed GPS data gives the best results in the video
alignment problem instead of using smoothed GPS alone. We have successfully
applied it to align video sequences from moving vehicles, in order to detect the
differences between these videos. The differences indicate zones where we can
predetect possible objects, like vehicles.
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