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Abstract. A very important aspect in manifold learning is represented by auto-
matic estimation of the intrinsic dimensionality. Unfortunately, this problem has
received few attention in the literature of manifold learning. In this paper, we
argue that feature selection paradigm can be used to the problem of automatic di-
mensionality estimation. Besides this, it also leads to improved recognition rates.
Our approach for optimal feature selection is based on a Genetic Algorithm. As a
case study for manifold learning, we have considered Laplacian Eigenmaps (LE)
and Locally Linear Embedding (LLE). The effectiveness of the proposed frame-
work was tested on the face recognition problem. Extensive experiments carried
out on ORL, UMIST, Yale, and Extended Yale face data sets confirmed our hy-
pothesis.

1 Introduction

In recent years, a new family of non-linear dimensionality reduction techniques for
manifold learning has emerged. The most known ones are: Kernel Principal Compo-
nent Analysis (KPCA) [1], Locally Linear Embedding (LLE) [2], Isomap [3], Super-
vised Isomap [4], Laplacian Eigenmaps (LE)[5, 6]. This family of non-linear embed-
ding techniques appeared as an alternative to their linear counterparts which suffer of
severe limitation when dealing with real-world data: i) they assume the data lie in an
Euclidean space, and ii) they may fail when the number of samples is too small. On the
other hand, the non-linear dimensionality techniques are able to discover the intrinsic
data structure by exploiting the local topology. In general, they attempt to optimally
preserve the local geometry around each data sample while using the rest of the sam-
ples to preserve the global structure of the data. Most of existing works on non-linear
manifold learning techniques are focused either on the graph design [7] or on the objec-
tive function that should be optimized. However, to the best of our knowledge, there is
no work attempting to automatically estimate the dimensionality of the non-linear em-
bedding. For classification tasks, the common way was to plot the performance over a
validation (test) data set as a curve from which the optimal dimension can be estimated.
This assumes that all dimensions below the found one will be considered as relevant
and all dimensions beyond it should be irrelevant. This assumption seems to be very
simplistic and does not take into account the effect of subsets of dimensions.
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For this reason, we address this problem in the current paper. The main contri-
bution of our work is represented by a generic framework associated with manifold
learning which allows the extraction and selection of optimal features (dimensions) in
the embedded subspace (from the perspective of pattern classification). Our approach
for feature selection is guided by a Genetic Algorithm (GA). The advantage of the pro-
posed framework is twofold. First, by selecting the most relevant features (dimensions),
the classification performance is enhanced (as proven by the experimental results). Sec-
ond, by retaining only the most relevant dimensions, pattern classification task becomes
much more efficient1 (from the point of view of computational complexity).

The remainder of the paper is organized as follows. Section 2 reviews two non-
linear manifold learning techniques. Section 3 briefly describes the feature selection
paradigm. Section 4 provides some experimental results obtained with four public face
data sets. Finally, section 5 contains our conclusions.

2 Non-linear Embedding techniques

2.1 Laplacian Eigenmaps

Laplacian Eigenmaps is a recent non-linear dimensionality reduction technique that
aims to preserve the local structure of data [5]. Using the notion of the Laplacian of the
graph, this non-supervised algorithm computes a low-dimensional representation of the
data set by optimally preserving local neighborhood information in a certain sense. We
assume that we have a set of N samples {xi}Ni=1 ⊂ RD. Let’s define a neighborhood
graph on these samples, such as a K-nearest-neighbor or ϵ-ball graph, or a full mesh, and
weigh each edge xi ∼ xj by a symmetric affinity function Wij = K(xi; xj), typically

Gaussian Wij = exp(−∥xi−xj∥2

β )

where β is usually set to the average of squared distances between all pairs. LE
seeks latent points {yi}Ni=1 ⊂ RL that minimize 1

2

∑
i,j ∥xi − xj∥2 Wij , which dis-

courages placing far apart latent points that correspond to similar observed points. If
W ≡ Wij denotes the symmetric affinity matrix and D is the diagonal weight matrix,
whose entries are column (or row, since W is symmetric) sums of W, then the Laplacian
matrix is given L = D − W. The objective function can also be written as:

1

2

∑
i,j

∥yi − yj∥
2 Wij = tr(ZT L Z) (1)

where ZT = Y = [y1, . . . , yN ] is the N × L embedding matrix and tr(.) denotes the
trace of a matrix. The ith row of the matrix Z provides the vector yi—the embedding
coordinates of the sample xi.

The embedding matrix Z is the solution of the optimization problem:

min
Z

tr(ZT L Z) s.t. ZT D Z = I, ZT L e = 0 (2)

where I is the identity matrix and e = (1, . . . , 1)T . The first constraint eliminates the
trivial solution Z = 0 (by setting an arbitrary scale) and the second constraint eliminates

1 This is a clear advantage for large data sets for which the dimensionality of the non-linear
embedded space is equal to the size of the data set.
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the trivial solution e (all samples are mapped to the same point). Standard methods show
that the embedding matrix is provided by the matrix of eigenvectors corresponding to
the smallest eigenvalues of the generalized eigenvector problem,

L z = λD z (3)

Let the column vectors z0, . . . , zN−1 be the solutions of (3), ordered according to
their eigenvalues, λ0 = 0 ≤ λ1 ≤ . . . ≤ λN−1. The eigenvector corresponding to
eigenvalue 0 is left out and only the next eigenvectors for embedding are used. The
embedding of the original samples is given by the row vectors of the matrix Z, that is,
Y = [y1, y2, . . . , yN ] = ZT .

2.2 Locally Linear Embedding

One important geometric intuition behind the LLE algorithm is that each data point
and its neighbors lie on or are close to a locally linear patch of the manifold. LLE
tries to characterize the geometry of the local patches by finding the linear coefficients
that reconstruct each data point from its neighbors. In the first step, each sample is
approximated by a weighted linear combination of its K nearest neighbors, making
use of the assumption that neighboring samples will lie on a locally linear patch of the
nonlinear manifold. To find the reconstruction weight matrix W, where the entry Wij

contains the weight of neighbor j in the reconstruction of sample xi. The reconstruction
error is minimized subject to the constraint that the rows of the weight matrix sum to
one:

∑N
j=1 wij = 1.

Let Y be the non-linear embedding of the original data Y = [y1, y2, . . . , yN ]. Then
Y can be computed by minimizing the following embedding cost function:

N∑
i=1

||yi −
N∑
j=1

wijyj ||2 = tr(Y M YT ) (4)

where M is given by M = (I − W)(I − W)T . The eigenvectors of the matrix M
corresponding to the smallest eigenvalues then form the final embedding Y.

3 Feature selection

3.1 Overview

In many fields, including pattern recognition and machine learning, the input data are
represented by a very large number of features, but only few of them are relevant for
classification task. Many algorithms become computationally intractable when the di-
mensionality of the data is too high. On the other hand, once an optimal set of se-
lected features has been chosen, even the basic classifiers (e.g., K-nearest neighbor) can
achieve desirable performance. Therefore, the process of feature selection, i.e. the task
of choosing a small subset of features which is statistically relevant, can be critical to
minimize the classification error. At the same time, feature selection also reduces train-
ing and inference time and leads to a better data visualization as well as to a reduction of
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measurement and storage requirements. Roughly speaking, feature selection algorithms
have two key problems [?,?]: (i) search strategy and (ii) evaluation criterion. The first
key problem refers to the strategy of the search in the space of all possible solutions.
Roughly speaking, the search strategies can be optimal or heuristic. Regarding the sec-
ond key problem, feature selection algorithms can be categorized into filter model and
wrapper model. In the wrapper model, the feature selection method tries to directly op-
timize the performance of a specific predictor (classification or clustering algorithm).
The main drawback of this method is its computational deficiency. In the filter model,
the feature selection is done as a preprocessing, without trying to optimize the perfor-
mance of any specific predictor directly [8, ?,?]. A comprehensive discussion of feature
selection methodologies can be found in [9].

3.2 Optimal feature subset using a Genetic Algorithm

We adopt here a wrapper technique for feature selection. The adopted evaluation strat-
egy will attempt to maximize the recognition accuracy over a given validation set.

The adopted search strategy will be carried out using a Genetic Algorithm (GA).
Genetic Algorithms (GAs) are biologically motivated adaptive systems based on natural
selection and genetic recombination [10] whose main application is for optimization
problems. In the standard GA, candidate solutions are encoded as fixed length vectors–
strings. We use a bit string representation whose length is determined by the number
of eigenvectors obtained as a result of the embedding process. Thus, each eigenvector
is associated with one bit in the string. If the ith bit is 1, then the ith eigenvector is
selected. Otherwise, that component is discarded. Each string thus represents a different
subset of eigenvectors. The initial population of solutions is chosen randomly. These
candidate solutions are allowed to evolve over a certain number of generations. At each
generation, the fitness of each string is set to the recognition rate over a fixed validation
set.

4 Performance study

To verify the effectiveness of our proposed framework, we applied it to the face recog-
nition problem. Four public face data sets are considered.

4.1 Data sets

1. The ORL face data set2. There are 10 images for each of the 40 human sub-
jects, which were taken at different times, varying the lighting, facial expressions
(open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses). The
images were taken with a tolerance for some tilting and rotation of the face up to
20o. Some samples are shown in figure 1.

2 http : //www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html
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2. The UMIST face data set3. The UMIST data set contains 575 gray images of 20
different people. The images depict variations in head pose. Some samples are show
in figure 2.

3. The Yale face data set4. It contains 11 grayscale images for each of the 15 individu-
als. The images demonstrate variations in lighting condition (left-light, center-light,
right-light), facial expression (normal, happy, sad, sleepy, surprised, and wink), and
with/without glasses. Figure 3 shows some instances from this dataset.

4. The Extended Yale Face Database B5. It contains 16128 images of 28 human sub-
jects under 9 poses and 64 illumination conditions. In our study, a subset of 1800
images has been used. Figure 4 shows some face samples in the extended Yale Face
Database B.

Fig. 1. Some samples in ORL data set.

4.2 Experimental results

The experiments consisted of two stages. In the first stage, the selection paradigm was
run over a fixed validation set. For every face data set, the validation set was randomly
set to 40% of the whole data set. In the second stage, we evaluated the generalization
capacity of the obtained features (generalization tests). For each face data set and for

3 http : //www.shef.ac.uk/eee/research/vie/research/
face.html

4 http : //see.xidian.edu.cn/vipsl/database Face.html
5 http : //vision.ucsd.edu/ ∼ leekc/ExtY aleDatabase/
ExtY aleB.html
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Fig. 2. Some samples in UMIST data set.

Fig. 3. Some samples in YALE data set.

Fig. 4. Some samples in Extended Yale data set.
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every method, we conducted three groups of experiments for which the percentage of
training samples was set to 30%, 50% and 70% of the whole data set. The remaining
data was used for testing. The partition of the data set was done randomly. In all our
experiments the classification in the embedded spaces (selected or unselected) was car-
ried out by the Nearest Neighbor Classifier. Figure 5 shows the results of the first stage,
where the plots depict the validation results before (blue line) and after feature selection
(red line), for each data set.

In table 1, we summarize the face recognition performance using the Laplacian
Eigenmaps embedding on the four data sets (output of second stage). For every data set
and for every training percentage, three schemes were used: the original features/dimensions
(Orig.), the selected features using the GA (GA), and the sorted features using the Fisher
Score6 (FS). This table illustrates the average best recognition rate (%) over 5 random
splits. The number in parenthesis is the mean recognition over the available dimen-
sions. We can observe that: (i) the best recognition rate remains almost the same for
all schemes, however, the GA scheme got these results with a fraction of the original
features which varies between 30% and 40% of the total dimensions, and (ii) the GA
method provided the most stable recognition rate as a function of the features used.
Table 2 shows the face recognition performance using the LLE embedding on UMIST
data set. Table 3 provides a comparison between the original dimensionality of the em-
bedded space and the dimensionality discovered by our feature selection approach (in
bold).

30% ORL UMIST Yale Ex.Yale
Orig. 67.8 (52.5) 90.7 (73.8) 75.9 (51.7) 67.8 (56.0)
GA 68.1 (66.9) 91.3 (83.8) 74.1 (61.7) 68.2 (65.2)
FS 71.8 (48.9) 89.7 (60.3) 73.3 (44.2) 69.1 (54.7)
50%

Orig. 73.5 (65.4) 94.1 (83.1) 79.2 (57.7) 73.5 (63.2)
GA 74.0 (79.8) 94.5 (90.0) 79.0 (66.2) 74.0 (70.8)
FS 84.0 (61.8) 94.0 (70.2) 77.5(49.5) 73.8 (61.4)
70%

Orig. 87.1 (72.9) 95.8 (88.9) 78.8 (64.0) 75.5 (64.2)
GA 87.3 (83.8) 95.6 (92.2) 78.4 (71.9) 76.0 (72.2)
FS 88.1 (69.1) 94.9 (77.7) 76.7 (54.7) 75.5(60.4)

Table 1. Comparison of recognition rates between the three schemes: maximum and average (in
parenthesis).

5 Conclusion

In this paper, we proposed an automatic estimation of dimensionality for manifold
learning through an optimal feature selection framework, based on a Genetic Algo-

6 This scheme re-ranks the features according to their Fisher Score.
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Fig. 5. Feature selection for LE embedding using a GA for four face data sets.
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UMIST Train30% Train50% Train70%
Orig. 64.3 (47.4) 73.7 (60.1) 78.5 (66.4)
GA 61.6 (54.5) 73.1 (64.6) 77.7 (68.8)
FS 60.3 (45.5) 72.3 (58.2) 76.0 (63.9)

Table 2. Average best recognition rate (%) over 5 random splits using the LLE method.

ORL UMIST Yale Ex.Yale
LE 68 (200) 141 (300) 54 (120) 486 (1200)

LLE 77 (200) 82 (200) 32 (80) 243 (600)
Table 3. The size of the selected features as obtained by the GA.

rithm. Experimental results show that the proposed approach can enhance the global
performance for classification tasks, while reducing the computational complexity by
removing the irrelevant features obtained by the non-linear embeddings.
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