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Abstract

This paper presents a domain adaptation strategy to efficiently train network
architectures for estimating the relative camera pose in multi-view scenarios.
The network architectures are fed by a pair of simultaneously acquired im-
ages, hence in order to improve the accuracy of the solutions, and due to the
lack of large datasets with pairs of overlapped images, a domain adaptation
strategy is proposed. The domain adaptation strategy consists on transfer-
ring the knowledge learned from synthetic images to real-world scenarios.
For this, the networks are firstly trained using pairs of synthetic images,
which are captured at the same time by a pair of cameras in a virtual en-
vironment; and then, the learned weights of the networks are transferred to
the real-world case, where the networks are retrained with a few real images.
Different virtual 3D scenarios are generated to evaluate the relationship be-
tween the accuracy on the result and the similarity between virtual and real
scenarios—similarity on both geometry of the objects contained in the scene
as well as relative pose between camera and objects in the scene. Experi-
mental results and comparisons are provided showing that the accuracy of all
the evaluated networks for estimating the camera pose improves when the
proposed domain adaptation strategy is used, highlighting the importance
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on the similarity between virtual-real scenarios.

Keywords: Relative camera pose estimation, domain adaptation, siamese
architecture, synthetic data, multi-view environments.

1. Introduction

During the last years the number of computer vision applications have grown
significantly, mainly due to the appearance of different machine learning tech-
niques and neural network architectures. Some of these applications, includ-
ing driving assistance, human pose estimation, mobile robots, augmented
reality, 3D object reconstruction, just to mention a few, have the automatic
camera calibration as their principal process. Mainly to obtain the extrin-
sic camera parameters, which allows to obtain the relationship between the
camera and the world coordinate system. In the current work the multi-
view camera pose estimation problem is tackled; in this problem, the relative
position and orientation, between two or more cameras, is estimated. This
process is a challenging problem since factors such as poor illumination, lack
of texture, change in scale, among others, affect it and are ever-present as
a part of the real-world landscape. During last decades different algorithms
have been proposed for extrinsic camera parameters estimation (i.e., rela-
tive translation and rotation) [1, 2, 3, 4, 5, 6, 7]—throughout this work both
terms, extrinsic camera parameters and camera pose, will be indistinctly
used. Classical approaches are based on the usage of common feature points
in a pair of images; these detected-described points (e.g., SURF, ORB, SIFT)
are used then to estimate the relative pose between the views. The amount
of common feature points, detected in both images, is an important factor
to get good accuracy.

Recently, several deep learning based approaches have been proposed for
computer vision tasks such as segmentation, image classification, face recog-
nition, super-resolution, among other [8, 9, 10]; in all the cases overcoming
the corresponding state-of-the-art results. In deep learning based approaches,
a Convolutional Neural Network (CNN) is trained, in general with a large
number of data, to solve the specific problem. For the camera pose estimation
problem, also different CNN based approaches have been recently proposed,
showing appealing results [11, 6, 12]. The main challenge in the camera pose
estimation problem, in the multi-view context, lies on the fact that images
may have different appearances when there is a large pose difference (position
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Figure 1: Images captured in a multi-view setup, which are taken at the same time from
different positions.

and orientation) between the cameras. This large pose difference is addition-
ally affected by occlusions in the scene, making the camera pose estimation
a more challenging problem. Figure 1 shows an illustration of a multi-view
scenario containing moving objects with different occlusions.

Having in mind deep learning based approaches’ result reaches the best
solution, an important element in these schemes is the dataset used for train-
ing such architectures. Several datasets have been proposed to tackle this
task (e.g., Cambridge [13] and 7-Scene [14]). These datasets contain just a
small number of images, which were acquired by a single camera while it
moves around the scene. On the contrary to previous datasets, in [15] a
novel object oriented dataset has been presented. This dataset, referred to
as DTU-Robot, has been acquired using a robotic arm in a scenario that con-
tains a few sets of small static objects (e.g., toys, scale models of buildings,
wood blocks, etc.). Although interesting and quite useful dataset, since an
accurate ground truth is provided (through the direct/inverse kinematic of
the robot’s end effector), it has as a limitation the fact that just an indoor
and small scenario is considered, being a difficult task transferring knowledge
to outdoor large multi-view environments (e.g., video surveillance scenarios).

Despite of different datasets available to tackle the training of deep learn-
ing based camera pose estimation approaches, there are some limitations.
Main limitation is related with the amount of data in these datasets. The
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Figure 2: (a) Proposed architecture is trained using synthetic images captured from dif-
ferent positions at the same time. (b) Trained architecture with synthetic images is used
to apply DA strategy using real images. (c) Updated weights after DA strategy is used to
estimate relative camera pose (i.e., translation and rotation relative).

second problem is related with the type of scenario, in other words, if the
scenario used for training is quite different to the one where the approach is
used, results may be affected by such a difference (i.e., geometry of the ob-
jects contained in the scene as well as their appearance—color and texture).
In order to overcome these problems, the usage of virtual environments have
been considered in the literature. This strategy has been useful in tasks
such as 3D object pose recognition, optical flow estimation, among other
[16, 17, 12]. An advantage of using virtual environments lies on the fact that
on the one hand, it is possible to generate almost an unlimited set of synthetic
images; on the other hand, a large variability, containing different conditions
and elements, may be considered; for instance, in the case of pedestrian
detection for video surveillance or driving assistance, scenes with different
weather conditions, illuminations, pedestrian’s shapes, clothes, etc. can be
considered during the dataset generation (i.e., synthetic image acquisition).
An additional advantage when virtual environments are considered lies on
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the fact that ground truth are automatically obtained, reducing human error
when the datasets are manually annotated. These virtual environments can
be designed by using specific tools such as CARLA Simulator [18], Virtual
KITTI [19], including Video Game engines, just to mention a few.

Although the usage of virtual environments could be an option to over-
come the limitation of having a reduced amount of data for the training
process, the solution is not that much direct. The knowledge acquired in a
virtual environment (source) needs to be transferred to the real environment
(target) considering the difference between these two domains, for instance in
terms of data distribution or feature spaces. This transference is performed
by means of Domain Adaptation (DA) techniques. DA techniques have been
applied in tasks such as low-resolution image classification [20], attribute-
based classification [21], among others, to obtain better results than using
just the provided set of real training data.

In the current work, different CNN Siamese architectures are evaluated,
which are fed with a set of pairs of images to estimate the relative cam-
era pose. These images are acquired from different points of view at the
same time, considering a minimum overlap between them. In order to take
advantage of the large amount of data that can be obtained from virtual
environments, the architectures are firstly trained using pairs of synthetic
images, i.e., pairs of synthetic images obtained from virtual 3D representa-
tions of urban environments, which could contain dynamic and static objects
such as building, pedestrians, cars and trees; then, the knowledge learned on
the trained models is transferred to the real-world using real images, where
the camera pose problem is solved. Figure 2 shows an illustration of this DA
strategy. In summary, the contributions of this manuscript are as follows:

• Develop a domain adaptation strategy to train a network for tackling
the relative camera pose estimation problem.

• Generate different synthetic datasets containing pairs of images from
different scenarios.

• Show the importance on the similarity between the real and synthetic
images; in other words geometric similarity (i.e., 3D models in real and
virtual scenarios) and point of view similarity (i.e., distance between
camera and objects in the scene and camera orientation).

The remainder of the paper is organized as follows. In Section 2 previous
works are summarized; then, in Section 3 the proposed approach is detailed
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together with a description of the used synthetic datasets. Experimental
results are reported in Section 4 together with comparisons of results with
different synthetic datasets. Finally, conclusions and future work are given
in Section 5.

2. Related Works

This section presents a review of works related with the camera pose estima-
tion process together with a review of state-of-the-art approaches on the DA
problem.

2.1. Camera Pose Estimation

Automatic estimation of the camera extrinsic parameters, also referred to as
camera pose, is a challenging problem. To solve it, some CNN architectures
have been recently proposed. In that direction, the authors in [13] have pro-
posed a CNN based method to regress the 6-DOF camera pose from RGB
images obtained from a moving camera. This method is robust to changes
on illumination, motion blur, and different camera intrinsic parameters. The
output is defined by a 3D-vector for the camera’s position and a quaternion
is used to represent the orientation. The Euclidean distance is used as a loss
function and a weighting factor is considered for keeping the position and
orientation errors at a similar scale. In [22], the authors update the previous
approach with a new loss function, which consists of two components: the
residual regression and the uncertainty regularization term; the proposed ap-
proach is able to learn camera pose (i.e., position and orientation) optimally,
without including any hyperparameters to balance the expected value of po-
sition and orientation errors, since both are expressed in different units. In
[11] the authors have proposed a novel method for camera pose estimation
based on pedestrian’s head observations and assuming a known focal length
from the input video, which is captured by a static camera. It does not re-
quire any special calibration template to infer extrinsic camera parameters
from the surveillance video. A synthetic dataset is considered where people’s
height is predefined. This dataset is used to train the proposed approach,
which is then generalized to real-world environments, being robust to false
positive detection. Head detector results and known camera focal length are
used as inputs of the model to predict extrinsic camera parameters.

A novel architecture based on 3D spatial transformers has been proposed
by [23], which tackles the problem of LiDAR-Camera calibration by using
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geometric and photometric information. Assumptions about any initial es-
timate for the extrinsic parameters are avoided, including specific features
in the scene. The proposed approach takes as input a LiDAR point cloud,
the corresponding monocular image, and the camera calibration matrix K.
Instead of directly regress to the calibration parameters, they are obtained
maximizing the geometric and photometric consistency of the input images
and point clouds. In [7], the authors have proposed an architecture that is
able to estimate the relative pose between the two cameras, as well as the
pose with respect to the global reference system. This network is based on
a Recurrent Convolutional Neural Network (RCNN) where this information
(global and relative) is fused, including a Long Short Term Memory in each
network to improve the monocular localization accuracy. The proposed ap-
proach consists of three parts: a CNN for extracting features of images, a
RCNN for relative and global pose regression, and a fully-connected fusion
layer to fuse the global and relative pose. Additionally, two loss functions are
used: in the first one, cross transformation constraint is employed to enforce
the temporal geometric consistency of the consecutive frames. In the sec-
ond one, mean squared error is used between the predicted pose and ground
truth.

On the contrary to previous approaches, where the camera pose estima-
tion problem was related to a single image obtained from a moving camera,
the relative camera pose estimation problem is also tackled in multiview sce-
narios, where more than one camera is used. Note that these two scenarios
(single moving camera or multi-camera), although similar, have some little
differences. For instance, in the case of a moving camera there are problems
when the scene contains moving objects, which is even more difficult in case
of the moving objects are articulated or deformable (e.g., a pedestrian, a
piece of cloth, etc.). One of the work in this multi-view domain has been
presented by [24], where the authors have proposed to use a Siamese CNN ar-
chitecture to predict the relative camera pose between two cameras. AlexNet
architecture is used as a base network for both of the branches and transfer
learning is applied to initialize the network with the learned weights from
classification task on ImageNet [25] and Places [26] datasets. Datasets for
training neural networks consist of five landmarks (Montreal Notre Dame,
Piccadilly, Roman Forum, Vienna Cathedral and Gendarmenmarkt) [27] and
DTU Robot Image Dataset [15] for validation. Euclidean distance is used
as a loss function to estimate relative camera pose, including a scale factor
like in [13] to balance the translation and rotation error. In [6], the authors
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have proposed to use a Siamese CNN based on a modified AlexNet architec-
ture with two identical branches and shared weights. The training process
was performed from scratch with a set of pairs of images of the same scene
simultaneously acquired from different points of view. Unlike the previous
approach [24], the obtained features of both pairs of images are concatenated
to two fully connected layers to estimate the relative camera pose (i.e., trans-
lation and rotation). Euclidean distance is used as a loss function. In [28]
the authors have also proposed a Siamese Network architecture to predict
relative camera pose, similar to the one proposed by [24, 6]. In this case,
the network architecture is based on GoogLeNet where three variants are in-
cluded in the pose inference module to compute the relative pose between the
cameras: a parameter-free module, a parameter-free module with additional
losses and a relative pose regressor based on FC-layers. The loss function is
the same as the one in [13], where a scale factor (β) is used to balance the loss
values between the translation and rotation. Cambridge Landmark dataset
[13] is used for training and validation. The output is a 7-Dimensional vector,
where rotation is represented as a quaternion, and translation is given by a
3-Dimensional vector (x, y, z).

2.2. Domain Adaptation

During the latest years, machine learning techniques have obtained great
success and have been used in several real-world applications. A large-scale
dataset is necessary for the training process under the major assumption,
which lies in sharing the same feature space or distribution between training
and testing data. Some problems between the feature space and distribution
in real-world applications could arise due to factors such as illumination
change, image quality and scale, poses, just to mention a few. To solve it, a
process referred to as Domain Adaptation may be used, where labeled data
in one or more relevant source domains are applied on new tasks in a target
domain. Some shallow DA methods have been proposed to solve a domain
shift problem between two domains. These can be divided into two classes:
instance-based DA [29, 30] and feature-based DA [31, 32]. Both classes of DA
reduce the discrepancy between domains. The first one, selects certain parts
of data from the auxiliary datasets to compose the intermediate domains
to train the deep network. These auxiliary datasets could be obtained by
combining certain parts of the source and target data. For the second one,
shared space is learned to match the distributions of both domains (i.e.,
source and target).
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As mentioned above, deep learning architectures have been used to im-
prove state-of-art results through of feature extraction, which can represent
high-level abstractions in different tasks. Some methods based on deep learn-
ing, where different DA strategies are embedded into the learning process,
have been recently proposed [33]. Depending on relationship between source
and target domains, transferring knowledge can be performed in one-step or
multi-step DA. In the first case, when both domains (source and target) are
directly related, i.e., the feature spaces is the same, it is known as homoge-
neous DA, which are divided into three types such as supervised DA with
labeled data, semi-supervised DA with labeled and unlabeled data and non-
supervised DA with unlabeled data; on the contrary, in the second case, when
the feature spaces between the source and target domains are nonequivalent,
it is known as heterogeneous DA. In the second case, i.e., multi-step DA, an
intermediate domain is used, which should be highly related to the source
and target domains.

Considering one-step DA, some approaches have been proposed. One of
them is the discrepancy-based approach. In [34], the authors experimentally
propose to quantify the generality versus specificity of neurons in each layer
of a deep convolutional neural network. The performance benefits of trans-
ferring features decreases as the distance between the base task and target
task increases. They find that using the transfer learning and fine-tuning to a
new task can produce a boost to generalization performance. Basically, fine-
tuning lies in training a network on a source domain and after reuse the first
n layers of the trained network to conduct the training in the target domain.
Depending on the amount of data of target domain, and similarity to source
domain, these n layers can be fine-tuned or frozen during the training. For
the remaining layers, a random initialization is used and trained with loss
based on discrepancy, which is also known as class criterion, where a small
number of labeled sample is available. It is one of the most basic training
loss in deep DA.

In [35] the authors propose a new CNN architecture to exploit unlabeled
and sparsely labeled target domain data. Furthermore, simultaneously op-
timizes for domain invariance to facilitate domain transfer. The domain
confusion, which makes that the marginal distributions of the two domains
as similar as possible, and softmax cross-entropy losses, are combined to train
the target network. It can be used to solve supervised adaptation and unsu-
pervised adaptation. In the first one, a small amount of target labeled data
are available, while in the second one, target labeled data are available from
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a subset of the categories. A modification of [35] is presented in [36], where
the authors propose a new multi-task adaptation approach, which benefits
from known cross-category relationships to simultaneously learn and adapt
recognition at the attribute and category level.

Additional to the loss functions mentioned above, other methods have
been used in supervised DA as training loss to fine-tune the target model.
In [37], the authors have proposed a technique that transfers supervision
between images from different modalities. The model is able to learn rich
representations from unlabeled modalities, being used as a pretraining pro-
cedure with limited labeled data. The Euclidean loss is used as a measure of
the similarity between the representations. A new deep transfer metric learn-
ing method has been proposed by [38], where a set of hierarchical nonlinear
transformations is learned by transferring discriminative knowledge from the
labeled source domain to the unlabeled target domain. To reduce the dis-
tribution difference between both domains (i.e., source and target domain),
the marginal Fisher analysis criterion and Maximum Mean Discrepancy are
applied. In [21], the authors have tackled the problem of object classification
when training and testing classes are disjoint, i.e., the target class information
is unavailable. To solve it, they have proposed to introduce attribute-based
classification for object detection, considering a human-specified high-level
description of the target objects instead of training images, such as: shape,
color or even geographic information.

3. Proposed Approach

This section firstly presents the Siamese network architecture, proposed in
our previous work [12], for estimating the relative pose (i.e., position and
rotation) between the two cameras—this network architecture is fed by a
pair of images simultaneously captured by each camera. This architecture is
as a benchmark, together with other state-of-the-art approaches, to evaluate
the proposed DA strategy. Secondly, the DA strategy proposed to train the
networks is introduced. This strategy consists on training the architectures
using synthetic datasets and then transferring the learned knowledge to the
real world, just by adapting the parameters according to a few images from
real scenarios. The synthetic images are acquired by using the CARLA
simulator [18]. With this strategy, the need of having a large dataset from
the real-world for training the used models is avoided.
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Figure 3: Illustration of the RelPoseTL architecture fed with two images simultaneously
captured from different points of views of the same scene.

3.1. Network Architecture

This section presents some details of the network architecture used as a
benchmark to evaluate the proposed Domain Adaptation strategy. This net-
work, referred to as RealPoseTL, estimates the relative pose between two
cameras by using the acquired images. In the experimental results sec-
tion other state-of-the-art architectures are also evaluated. RealPoseTL is a
Siamese model that consist of two identical branches of a modified Resnet-50
architecture. The weights are shared up to the fourth residual block. Then,
the output of each branch is concatenated to feed the fifth block of the used
model. Multiple residual units are used, including convolutional layers, batch
normalization, pooling, and identity blocks. The activation function of the
Resnet-50 architecture is replaced by ELUs function in the used model, since
according to [39], ELU helps to speed up convergence, avoiding the vanish-
ing gradient. Three fully connected layers called fc1, fc2 and fc3 are added
on the top of the proposed architecture. The two first fully connected lay-
ers (fc1, fc2 ) are fed with the output of each branch (i.e., after the fourth
residual block). The third fully connected layer (fc3 ) is added after the fifth
residual block. The global pose can be predicted for both cameras through
the features extracted up to the fourth residual block, which are then used to
feed the fully connected layers mentioned above. Each fully connected layer,
i.e., fc1 and fc2, has a dimension of 1024 followed by two regressors, which
help to predict the global translation in 3D vector-format (x,y,z ) and rota-
tion in quaternion-format (w,i,j,k). In contrast to the approach mentioned
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above, the relative camera pose is obtained between both cameras by two
regressors, which are fed from the output of the fully connected layer (fc3 ),
which has a dimension of 1024 and is connected to the fifth block of the used
model. These regressors are used to estimate the relative translation in a 3D
vector (x,y,z ) and rotation in a quaternion (w,i,j,k) between the given pair
of images.

Relative camera pose is represented by the following equation: ∆p = [t̂, r̂],
where the translation t̂ is represented by a 3D vector (x,y,z), and the rotation
r̂ is represented by a 4D vector represented by a quaternion (w,i,j,k). As
the images are captured at the same time from the same environment, it
is reasonable to build one model that is able to predict at the same time
the translation and rotation of the pair of images. Normally, the Euclidean
distance is used to compute the error between the estimation and ground
truth:

TGlobal(I) =
∥∥t− t̂∥∥

γ
, (1)

RGlobal(I) =

∥∥∥∥r − r̂

‖r̂‖

∥∥∥∥
γ

, (2)

where the ground truth translation is denoted by t and the predicted trans-
lation of used model is represented by t̂. Likewise, r is the ground truth
rotation and r̂ denotes the prediction of the quaternion values, which are
normalized to a unit length by using r̂

‖r̂‖ . γ is L2 Euclidean norm. Both

components (i.e., translation and rotation) are trained together within the
same loss function, including a factor β to balance both components due to
the difference in scale, similar to [13]. Hence, the proposed loss function is
defined as:

Lossglobal(I) = TGlobal + β ∗RGlobal, (3)

since the β parameter depends on several factors (e.g., scene, camera, scale,
among others) finding the right value becomes a challenging task. Hence, in
order to solve it, two learnable variables called ŝx and ŝy proposed by [22] are
used. These variables act as weights that balance translation and rotation
terms, generating a similar effect as β parameter. The modified loss function,
which uses the learnable variables, is as follow:
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LossGlobal(I) = (TGlobal ∗ exp(ŝx) + ŝx) + (RGlobal ∗ exp(ŝy) + ŝy). (4)

The loss function mentioned above is useful to independently estimate
the global pose for each pair of images using the corresponding branch of the
proposed architecture. On the other hand, the output of the fifth block is
needed to estimate the relative pose between both cameras, which is obtained
as follow:

TRelative(I) =
∥∥trel − t̂rel∥∥γ , (5)

RRelative(I) =

∥∥∥∥rrel − r̂rel
‖r̂rel‖

∥∥∥∥
γ

, (6)

where TRelative and RRelative estimate the relative camera pose between the
ground truth and the prediction obtained by the proposed architecture (t̂rel
and r̂rel). Similar to Eq. (2), r̂rel has to be normalized before. In order to
obtain trel and rrel, the Eq. (7) and Eq. (8) are considered:

trel = tC1 − tC2, (7)

rrel = r∗C2 ∗ rC1, (8)

where Ci corresponds to the pose parameters of the (i) camera, referred to as
a global reference system. In order to obtain the relative translation between
both cameras, the Eq. (7) is used, while to determinate the relative rotation
between both cameras, the Eq. (8) is considered. In order to compute the
relative rotation it is necessary to use the conjugate quaternion of rC2 named
as r∗C2. Finally, the loss function used to obtain the relative pose is defined
as follows:

LossRelative(I) = (TRel ∗ exp(ŝx) + ŝx) + (RRel ∗ exp(ŝy) + ŝy). (9)

Note that the global and relative camera pose parameters are obtained
through two different equations. The first one, Eq. (4), predicts the global
camera pose using the output from each branch of the trained model, while
the second one, Eq. (9), predicts the relative camera pose through of the
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Table 1: The initial position and orientation of the two cameras with respect to the global
reference system for each virtual scene.

Scene x y z pitch yaw roll

Dataset 1 -52.0 -142.4 10.5 -17.0 90.0 0.0

Dataset 2 -52.0 -148.4 5.5 7.0 90.0 0.0

Dataset 3 -25.0 133.8 3.0 15.0 90.0 0.0

Dataset 4 -29.0 137.8 10.5 -17.0 90.0 0.0

Dataset 5 71.0 238.5 4.0 -17.0 270.0 0.0

Dataset 6 71.0 238.5 11.5 -17.0 270.0 0.0

output of the fifth block of trained model (see Fig. 3). The final loss function
for training the proposed architecture is defined as follows:

L = LossGlobal + LossRelative. (10)

3.2. Synthetic Dataset Generation

This section presents the steps followed to generate the synthetic datasets,
which are used for training the different architectures. Synthetic images
are obtained from a customized virtual world (i.e., the CARLA Simulator,
an open-source software tool [18]). The CARLA simulator has an editor
that allows modifying the existing virtual world; this editor integrates both
CARLA Simulator and Unreal Engine, which is a video game engine on
which this simulator is based. In addition, the open source software tool
called OpenMVG [40] was used to guarantee a minimum overlap between a
given pair of synthetic images.

The different synthetic image datasets are obtained by the CARLA sim-
ulator as indicated below. First, the path to be followed by a mobile vehicle
configured for this task is defined. Two virtual cameras are considered; they
are placed at two different points on the vehicle. Second, the virtual cameras
are configured to generate images with the following attributes: width=2560,
height=2560 and FOV=100. Both cameras start the trajectories with pre-
determined values in their position and orientation (see Table 1); then, these
cameras perform the acquisition of images at the same time, which generates
a file with the positions (x, y, z) and rotation (pitch, yaw and roll) with
respect to the world. The process of acquiring, approximately 3000 synthetic
images, from both synchronized cameras, for each dataset, takes approxi-
mately three hours. Third, the OpenMVG is used to verify the percentage of
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overlap between the pairs of generated synthetic images. The pairs of images
that meet the overlap restriction of at least 60% are used to generate a file
containing the cameras’ relative pose information.

Different virtual scenarios were generated to recreate existing real-world
scenarios. The Cambridge Landmarks dataset was used as a reference, which
has different real-world scenes [13]. From all the real-world scenarios of Cam-
bridge Landmarks dataset, the KingsCollege and OldHospital scenes have
been considered in the current work. In order to generate the virtual scenar-
ios, 3D models of existing buildings, which have similar structures have been
used. It is necessary to consider that both scenarios, i.e., virtual and real
scenarios, should have the same feature spaces. Additionally, the orientation
between the cameras and objects also should be considered.

In order to evaluate the importance on similarity between synthetic and
real image datasets for the proposed DA strategy, six datasets have been gen-
erated. These datasets are intended to evaluate the importance of geometry
similarity between the virtual and real environments and the camera pose
similarity.

Figure 4 shows illustrations of the buildings used to generate the virtual
scenes. The first two scenarios take as a reference the KingsCollege and
OldHospital real-world scenes, while the last scenario is used to demonstrate
the importance on the similarity of the geometry of the objects contained in
the scene; the trajectories followed by the cameras are also depicted. These
trajectories always start from the blue point and move through the red or
fuchsia lines. The aforementioned sequence is executed a number of times
depending on the virtual scene. At the same time that the configured cameras
follow the predefined trajectory, their pose randomly varies at each instant
of time (i.e., on the translation the X coordinate could take random values
in between [-3, 3]m, the Y coordinate [-1, 3.5]m, while the Z coordinate [-1,
1.5]m; regarding the orientations, the pitch angle could take random values
in between [-3.5, 3.5] degrees, yaw angle [-15, 15] degrees while roll angle [-15,
15] degrees). These values were defined according to the characteristics of
each scene keeping values that guarantee a large overlap between the views.

4. Experimental Results

As mentioned above, this paper tackles the relative camera pose estimation
problem when a reduced amount of data are provided, which are necessary
to train the model. This drawback of lack of data is overcome by means of
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Figure 4: Panoramic views of the virtual scenarios and trajectories followed by the cameras
used to create the different datasets. (1st row) Scenario 1 used for generating synthetic
Datasets 1 and 2. (2nd row) Scenario 2 used for generating synthetic Datasets 3 and 4.
(3rd row) Scenario 3 used for generating synthetic Datasets 5 and 6.
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a DA strategy. This section first presents details on the synthetic and real
image datasets used for the training and evaluation stages; then, experimen-
tal results of the proposed DA strategy are described. This strategy consists
of first training with synthetic images, generated by CARLA simulator [18],
and then transferring this knowledge to the real-world by adapting the net-
work weights accordingly—the KingsCollege and OldHospital images, from
Cambridge dataset [13], are considered. The different architectures evaluated
in the current work have been implemented in TensorFlow-Keras and trained
with a NVIDIA Titan XP GPU and Intel Core I9 3.3GHz CPU.

4.1. Training with Real Images

This section describes how the evaluated architectures—our RelPoseTL model
[12] and state-of-the-art approaches [13, 28]—have been trained using real-
world image datasets. For RelPoseTL, all layers were initialized up the fourth
residual block with the weights of Resnet-50 pretrained on ImageNet dataset.
For the remaining layers, the normal distribution was used. Adam optimizer
is used to train the network with a learning rate of 10−4 and batch size of
32. The ŝx and ŝy variables, eq. (9), are initialized with -3.0 and -6.5 in all
the experiments respectively.

The architecture in [28], referred to as RPNet+, is a Siamese network
proposed to tackle the relative camera pose problem. The layers were initial-
ized with the weights of the GoogLeNet architecture pretrained on Place365
dataset. The stochastic gradient descent with momentum (SGDM) was used
as optimizer with a base learning rate of 10−5, decay rate of 0.90 each 80
epochs and batch size of 32.

Finally, regarding PoseNet [13], which is the third architecture evalu-
ated with the proposed DA strategy, it is a slightly modified version of the
GoogLeNet architecture. Basically, the softmax layers were removed to out-
put a pose vector of 7-dimensions (position and orientation). SGDM opti-
mizer is used, similarly to our previous work mentioned above [12]. The scale
factor β, used in the loss function to keep the position and orientation errors
at the same range, has been set to 100 for OldHospital dataset and 500 for
KingsCollege of Cambridge dataset.

As a pre-processing stage for all the evaluated architectures, the images
were resized to 224 pixels along the shorter side; then, the mean and standard
deviation are applied as a normalization process to each image. In the train-
ing process, three sets of 256, 512, and 1024 pairs of real-world images were
used, which were obtained from KingsCollege and OldHospital of Cambridge
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Figure 5: (1st row) Real-world images, OldHospital of Cambridge dataset. (2nd and 3rd
row) Synthetic image datasets generated by the CARLA simulator from different points
of views (images in Dataset 2 are the most similar to OldHospital dataset).

dataset. For each set, random crops of 224×224 pixels were computed to feed
the network architectures, since it allows to better generalize the training.
All sets of data were used to train the networks until convergence, which
approximately took 60, 90, and 120 minutes respectively for RelPoseTL, and
90, 180 and 360 minutes respectively for RPNet+ and PoseNet.

For the evaluation phase, three sets of 64, 128, and 256 pairs of images
were used. The pre-processing mentioned above was also used during the
evaluation phase. However, on the contrary to the training phase, central
crops were used instead of random crop, since this strategy is generally used
in the literature [13, 6, 12].

4.2. Training with Synthetic Images

This section presents details on the training process using synthetic images
as a first estimation. All architectures were initialized as presented in Section
4.1. In this case, the network architectures were trained with six different
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Figure 6: (1st row) Real-world images, KingsCollege of Cambridge dataset. (2nd and 3rd
row) Synthetic image datasets generated by the CARLA simulator from different points
of views (images in Dataset 4 are the most similar to KingsCollege dataset).

Figure 7: Synthetic image datasets generated by the CARLA simulator from different
points of views. These datasets have no similarity to OldHospital or KingsCollege datasets.
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synthetic image datasets, which were generated from different virtual envi-
ronments (see Fig. 4). These synthetic images were captured by different
cameras from different orientations at the same time (see Fig. 5, Fig. 6 and
Fig. 7). As a pre-processing stage, images were resized to 224×224 pixels,
including data normalization, like in the real image case. For the training
process, 8192 pairs of images were considered to train the RelPoseTL and
RPNet+ architectures; while the PoseNet architecture has been trained with
just 900 images. It should be mentioned that PoseNet needs just a set of sin-
gle images, instead of a set of pair of images, like the previous architectures.
Each of the synthetic image datasets contain 900 images. The training pro-
cess was performed for all synthetic image datasets until convergence, which
approximately took 30 hours each one for RelPoseTL and RPNet+, and ap-
proximately 20 hours each one for PoseNet. The pre-processing mentioned
above was also used during the evaluation phase. In the evaluation, a set of
2048 pairs of images from each synthetic image dataset has been considered
for RelPoseTL and RPNet+ architectures, while just 150 synthetic images
for the PoseNet architecture.

4.3. Domain Adaptation Strategy

This section presents details on the DA strategy, which transfers the learned
knowledge from synthetic images to real-world domain—this strategy is also
referred in the literature to as transfer learning. The proposed DA strategy
consists on initializing each layer of the architectures evaluated in the current
work with the weights learned during the process of training with synthetic
images (Section 4.2). Then, the transferring is applied by retraining and
refining each network, in an end-to-end way, with real-world images (see Fig.
2); this process is referred to as fine-tunning. The fine-tunning process is
independently performed for each one of the synthetic image datasets used
to train the architectures mentioned above. In each fine-tunning process
three sets of 256, 512, and 1024 pairs of real-world images are considered,
these sets of pairs of images belong to OldHospital and KingsCollege of Cam-
bridge dataset (see 1st row of Fig. 5 and Fig. 6). These processes took about
60, 90, and 120 minutes for each set of pairs of real-world images for Rel-
PoseTL architecture, and 90, 180 and 360 minutes respectively for RPNet+

and PoseNet architectures, until convergence was reached. Like in the real-
world case (Section 4.1), the evaluation phase has been performed using three
sets of 64, 128, and 256 pairs of real-world images.

20



Table 2: Euclidean distance and angular errors for the DA strategy on pairs of images
(PoI) from OldHospital of Cambridge dataset. In each case the network has been initially
trained with the six synthetic datasets (RD: Real Data; DTi: Dataset i). The best results
for each network are highlighted with boldface and the corresponding training strategy
with lightgray color.

DA strategy on OldHospital dataset

Trained

with

Train: 256 PoI

Test: 64 PoI

Train: 512 PoI

Test: 128 PoI

Train: 1024 PoI

Test: 256 PoI

RelPoseTL [12] RD 4.29m, 5.72º 3.93m, 4.04º 3.48m, 3.95º

DT1 + RD 4.16m, 6.43º 3.61m, 4.23º 3.66m, 3.99º
DT2 + RD 3.55m, 5.59º 3.40m, 3.70º 3.20m, 3.54º

RelPoseTL [12] DT3 + RD 3.61m, 6.53º 3.59m, 4.25º 3.31m, 3.72º
DT4 + RD 3.69m, 5.59º 3.45m, 4.33º 3.29m, 4.31º
DT5 + RD 4.82m, 6.35º 4.12m, 5.14º 3.94m, 4.65º
DT6 + RD 4.57m, 7.87º 3.98m, 6.12º 4.11m, 5.89º

RPNet+ [28] RD 4.06m, 5.70º 3.07m, 5.63º 3.04m, 5.08º

DT1 + RD 3.19m, 5.74º 3.06m, 5.08º 3.05m, 5.30º
DT2 + RD 3.69m, 5.13º 3.07m, 5.04º 3.03m, 4.57º

RPNet+ [28] DT3 + RD 3.21m, 5.55º 3.11m, 5.13º 3.04m, 5.04º
DT4 + RD 4.01m, 6.08º 3.08m, 5.17º 3.22m, 4.78º
DT5 + RD 3.23m, 5.78º 3.08m, 5.06º 3.13m, 4.67º
DT6 + RD 3.57m, 6.05º 3.11m, 5.44º 2.95m, 4.86º

PoseNet [13] RD 3.28m, 3.56º 3.75m, 5.01º 3.69m, 5.38º

DT1 + RD 2.95m, 3.82º 3.31m, 4.83º 3.68m, 5.29º
DT2 + RD 3.19m, 3.39º 3.09m, 4.73º 3.55m, 5.33º

PoseNet [13] DT3 + RD 2.49m, 3.64º 3.55m, 4.72º 3.71m, 5.23º
DT4 + RD 3.20m, 3.71º 3.83m, 4.60º 3.81m, 4.62º
DT5 + RD 3.05m, 3.72º 3.69m, 4.61º 3.58m, 5.33º
DT6 + RD 3.26m, 3.44º 3.72m, 4.67º 3.87m, 5.43º
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Table 3: Euclidean distance and angular errors for the DA strategy on pairs of images
(PoI) from KingsCollege of Cambridge dataset. In each case the network has been initially
trained with the six synthetic datasets (RD: Real Data; DTi: Dataset i). The best results
for each network are highlighted with boldface and the corresponding training strategy
with lightgray color.

DA strategy on KingsCollege dataset

Trained

with

Train: 256 PoI

Test: 64 PoI

Train: 512 PoI

Test: 128 PoI

Train: 1024 PoI

Test: 256 PoI

RelPoseTL [12] RD 5.28m, 5.29º 3.86m, 5.08º 2.95m, 4.06º

DT1 + RD 4.95m, 8.31º 4.14m, 4.32º 3.38m, 3.75º
DT2 + RD 4.92m, 5.50º 3.72m, 4.18º 2.86m, 3.68º

RelPoseTL [12] DT3 + RD 4.94m, 5.63º 3.99m, 4.93º 3.04m, 3.82º
DT4 + RD 4.89m, 4.96º 3.13m, 4.18º 2.35m, 3.32º
DT5 + RD 5.07m, 8.30º 4.07m, 6.14º 3.85m, 4.94º
DT6 + RD 4.81m, 7.94º 4.89m, 7.16º 3.94m, 5.99º

RPNet+ [28] RD 1.90m, 4.35º 1.58m, 3.87º 1.48m, 3.38º

DT1 + RD 2.39m, 4.16º 1.95m, 3.69º 1.49m, 2.98º
DT2 + RD 2.30m, 3.93º 1.62m, 3.11º 1.48m, 2.73º

RPNet+ [28] DT3 + RD 2.33m, 4.19º 1.84m, 3.52º 1.52m, 3.03º
DT4 + RD 1.85m, 3.44º 1.54m, 3.00º 1.27m, 2.69º
DT5 + RD 2.13m, 4.09º 1.82m, 3.38º 1.62m, 3.30º
DT6 + RD 2.35m, 3.74º 1.77m, 3.23º 1.51m, 2.83º

PoseNet [13] RD 2.14m, 3.92º 2.13m, 3.14º 2.24m, 2.76º

DT1 + RD 2.31m, 4.64º 2.29m, 3.65º 2.36m, 3.03º
DT2 + RD 1.83m, 3.73º 2.03m, 3.16º 1.99m, 3.17º

PoseNet [13] DT3 + RD 2.38m, 3.84º 2.40m, 3.56º 2.24m, 3.34º
DT4 + RD 1.95m, 3.55º 1.91m, 2.99º 1.83m, 2.74º
DT5 + RD 2.27m, 4.63º 2.12m, 3.15º 2.32m, 2.85º
DT6 + RD 2.26m, 3.98º 1.96m, 3.07º 1.95m, 2.98º
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4.4. Results
This section presents quantitative evaluations and comparisons when the ar-
chitectures considered in the current work (RelPoseTL, RPNet+ and PoseNet)
are trained with the strategies mentioned above—-i.e., firstly just pairs of real
images are considered and secondly, when the proposed DA strategy, which
uses synthetic image datasets obtained from the Carla simulator, is consid-
ered. Table 2 and Table 3 present the errors obtained for each case. Angular
error and Euclidean distance error are used to evaluate the performance
of the architectures with/without the usage of the proposed DA strategy.
All the datasets presented in Section 3.2 are considered to evaluate the DA
strategy. Angular error is used to compute the errors between the estimated
rotation and the ground truth, which is represented as a quaternion (i.e.,
a 4-dimensional vector). On the other hand, Euclidean distance is used to
measure the errors between the estimated translation and the ground truth,
which is represented as a 3-dimensional vector. The proposed DA strategy
is applied over each of the synthetic image datasets in order to evaluate the
importance of the similarity between images from a real-world scenario and
images from a virtual scenario, both scene geometry similarity as well as
camera pose used for the dataset acquisition.

Looking at the results presented in Table 2, it can be appreciated that
in the case of OldHospital dataset, the best results are obtained with the
DA strategy when synthetic images from Dataset 2 are used to start the
training of all architectures mentioned above. With Dataset 2, and by using
the proposed DA strategy, in all the cases (256, 512, or 1024 pairs of real
images), better results are obtained, both translation and rotation, if they
are compared with the architectures trained with just pairs of real images. It
should be highlighted that Dataset 2 is the most similar to the OldHospital
dataset (see images in Fig. 5 (1st row and 3rd row)). Dataset 1 (see images in
Fig. 5 (2nd row)) has been acquired in the same virtual scenario than Dataset
2, but in this case the cameras were placed further from the building and on a
top view. Regarding the KingsCollege dataset, also better results are reached
when the proposed DA strategy, using synthetic images, is considered. In this
case, the best results correspond to the DA strategy with Dataset 4. Images
in Dataset 4 are the most similar to the images in KingsCollege dataset (see
images in Fig. 6 (1st row and 3rd row)). Dataset 3 (see images in Fig. 6
(2nd row)) has been acquired in the same virtual scenario than Dataset 4,
but in this case the cameras were placed further from the building and on a
top view.
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An additional conclusion on the similarity between the real-world image
datasets with respect to the synthetic image datasets could be extracted by
a comparative analysis between results presented in Table 2 and Table 3
when Dataset 5 and Dataset 6 are considered. These two datasets have been
acquired in a synthetic scenario completely different from the OldHospital
and KingsCollege of Cambridge dataset (see Fig. 7). None of the networks
pre-trained with Dataset 5 or Dataset 6 reach the best result. As mentioned
above, in each case the best results have been obtained when the most similar
datasets are considered. This similarity should include both the virtual envi-
ronment (3D scenario used to represent the real environment) as well as the
trajectories of the cameras when the synthetic images are acquired, i.e., the
distance between the cameras and the objects and the relative camera-object
orientation, both features matter.

Finally, regarding the quantitative improvements reached with the pro-
posed DA strategy (i.e., Dataset 2 for the OldHospital dataset and Dataset 4
for the KingsCollege dataset for all network architectures) results are as fol-
low. For OldHospital dataset, the following improvements are reached; first,
RelPoseTL arquitecture [12]: i) about 17% on translation and 2% on rota-
tion for a set of 256 pairs of real-world images; ii) about 13% on translation
and 8% on rotation for a set of 512 pairs of real-world images; and iii) about
8% on translation and 10% on rotation for a set of 1024 pairs of real-world
images. Second, on the RPNet+ architecture [28] the following improvements
have been reached: i) about 9% on translation and 10% on rotation for a set
of 256 pairs of real-world images; ii) on translation there is no improvement
and about 10% on rotation for a set of 512 pairs of real-world images; and
iii) about 0.3% on translation and 10% on rotation for a set of 1024 pairs
of real-world images. Finally, on PoseNet architecture [13]: i) about 3% on
translation and 5% on rotation for a set of 256 pairs of real-world images;
ii) about 18% on translation and 6% on rotation for a set of 512 pairs of
real-world images; and iii) about 4% on translation and 0.9% on rotation for
a set of 1024 pairs of real-world images.

With respect to the second case, the KingsCollege dataset, the following
improvements have been reached; first, with the RelPoseTL architecture [12]:
i) about 7% on translation and 6% on rotation for a set of 256 pairs of real-
world images; ii) about 19% on translation and 18% on rotation for a set of
512 pairs of real-world images; and iii) about 20% on translation and 18% on
rotation for a set of 1024 pairs of real-world images. Second, on the RPNet+

architecture [28]: i) about 3% on translation and 21% on rotation for a set
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of 256 pairs of real-world images; ii) about 3% on translation and 22% on
rotation for a set of 512 pairs of real-world images; and iii) about 14% on
translation and 20% on rotation for a set of 1024 pairs of real-world images.
Finally, on PoseNet architecture [13] the following improvements have been
reached: i) about 9% on translation and 9% on rotation for a set of 256 pairs
of real-world images; ii) about 10% on translation and 5% on rotation for a
set of 512 pairs of real-world images; and iii) about 18% on translation and
0.7% on rotation for a set of 1024 pairs of real-world images.

The results obtained by the PoseNet architecture after applying the pro-
posed DA strategy, are slightly better compared with the architecture trained
with just single images. This little improvement could be explained by the
small number of synthetic images used for train the PoseNet architecture
in the proposed DA strategy; as mentioned in Section 4.2, this architecture
needs single images, instead of pair of images, hence all the images con-
tained in the synthetic image datasets have been considered. This suggests
the importance on the number of synthetic images used by the proposed DA
strategy. Additionally, the results show in Table 2 and Table 3, indicate that
regardless of the architecture, the results are improved when the DA strategy
is applied.

5. Conclusions

This paper addresses the challenging problem of relative camera pose esti-
mation by means of a domain adaptation strategy, which avoids the need
of having a large dataset of real-world images for training. The proposed
DA strategy overcome the dependency mentioned above, when these data
are scarce. The manuscript shows how the features extracted on the syn-
thetic images could help to have a better approximation of the weights of
the network, and then, to adapt it to the real-world images to reduce the
translation and rotation errors. Experimental results and comparisons are
provided showing improvements on the obtained results. As a conclusion, it
could be stated that the virtual environments’ contents should have similar
features with respect to the real environments’ contents. Furthermore, not
only the environments’ contents should be similar to the real scenario, but
also the image acquisition (distance and point of view between camera and
objects).
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