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Blanca3, F. Xavier Roca1

Abstract In this paper we present an example of a video surveillance application
that exploits Multimodal Interactive (MI) technologies. The main objective of the
so-called VID-Hum prototype was to develop a cognitive artificial system for both
the detection and description of a particular set of human behaviours arising from
real-world events. The main procedure of the prototype described in this chapter en-
tails: (i) adaptation, since the system adapts itself to the most common behaviours
(qualitative data) inferred from tracking (quantitative data) thus being able to recog-
nize abnormal behaviors; (ii) feedback, since an advanced interface based on Natural
Language understanding allows end-users the communication with the prototype by
means of conceptual sentences; and (iii) multimodality, since a virtual avatar has
been designed to describe what is happening in the scene, based on those textual
interpretations generated by the prototype. Thus, the MI methodology has provided
an adequate framework for all these cooperating processes.

1 Introduction

The main objectives of a Video Surveillance (VS) system are typically set to achieve
detection of anomalies and/or recognition of a predefined set of agent behaviors
arising from real-world events and in real-time [1]. One strategy for embedding
cognition in VS systems is to convey such recognized events to end-users based on
Natural-Language texts. This skill is justified by the fact that we can demonstrate
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that we understand what is going on in a scene if we are able to describe it using
Natural Language [2].

This communication capability is considered an important step towards develop-
ing a Cognitive Video Surveillance (CVS) system [4]. For example, a CVS system
exploiting language capabilities would require to implement the following func-
tionalities [6]: (i) adaptation, i.e. the system adapts its recording conditions for best
keeping track of agents and for best inferring contextual knowledge; (ii) feedback,
i.e. an advanced interface based on Natural-Language understanding supports con-
ceptual feedback where input texts define the end-user’s queries and commands; and
(iii) multimodality, i.e. inferred conceptual predicates are converted into Natural-
Language sentences for allowing the system its communication with end-users, for
example by means of a virtual avatar.

An envisaged prototype focused on the aforementioned cognitive aspects re-
quires the implementation of several modules like, at the very least, to detect motion
while keeping track of agents over time; to infer high-level, conceptual descrip-
tions based on agent trajectories combined with context (i.e. interacting objects and
knowledge about the scene [3]); and to communicate those inferred interpretations
to human operators using Natural-Language texts (and preferably in multiple lan-
guages).

This chapter introduces a CVS system as defined before. In essence, the proto-
type we have developed consists of the following steps:

• Those events detected in image data-streams are obtained from a system com-
posed of static or active cameras, see Fig. 1.(i), for example following the archi-
tecture presented in [7].

• Since common background subtraction detection and filter-based tracking allows
the system to estimate the trajectories of moving agents within the scene, these
trajectories constitute the basis of knowledge for further inference, as in [4].

• Semantic models defined by experts using logic formalism are used to infer in-
teractions and behaviors. The use of ontologies is very helpful for guiding the
top-down modelling of the expert database, while providing a framework which
centralizes the multiple types of knowledge involved in CVS (e.g. visual, con-
ceptual and linguistic).

• The generation of Natural-Language is usually based on linguistic models which
convey those semantic concepts inferred from behavioral models.

• Understanding textual queries from end-users is the basis for feedback, since
these queries can modify the functionality of the system by incorporating new
knowledge (e.g. refining a description or giving a better estimation of why a spe-
cific behavior is happening) or by modifying the acquisition conditions.

• Lastly, an advanced, multimodal interface is designed to communicate the results
to end-users using texts [5]. These Natural-Language sentences are reported by
means of a virtual avatar who explains us using speech what is happening in the
scene, see Fig. 1.(ii).

In the sequel, we will describe the methodology used to implement the capabili-
ties of adaptation, feedback and multimodality in a surveillance prototype.
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(i) (ii)

Fig. 1 Examples of advanced interfaces exploiting Natural-Language, which support conceptual
feedback plus a communication with human operators using virtual avatars.

2 Methodology and theoretical background

2.1 Adaptation: Anomaly Detection based on Trajectory Analysis

Nowadays, the detection of anomalies in video sequences is considered a hot topic
in video understanding research [6]. This issue is caused not by the difficulty of im-
plementing an anomaly detector, but because it is unclear which is the best definition
of anomaly. On the one hand, the concept of anomaly is usually related in video-
surveillance to suspicious or dangerous behaviors, i.e. those for which an alarm
should be fired when detected.

From a statistic point of view, normal behavior occurs more frequently than
anomalous behavior. This is the main assumption of all works performed in anomaly
detection research [12, 11, 4]. Since an anomaly is a deviation from what is consid-
ered normal, these two concepts, normality and anomaly, are complementary. In the
video-surveillance domain, standard learning procedures use observations extracted
by a motion tracking algorithm over a continuous recording to build a model of the
scenario that will determine somehow the normality or abnormality of new obser-
vations: trajectories, understood as the series of positions of an object over time,
from entering to exiting a scene, are considered by most authors as the most useful
information to embed the behavior of moving objects [15].

Extensive work has been done on behavior understanding based on trajectory
analysis: Makris and Ellis [4] considered spatial extensions of trajectories to con-
struct path models, which were updated when new trajectories were matched. A
similar approach was previously used in [14]. Piciarelli and Foresti [9] presented
an online modeling algorithm to obtain a hierarchy of typical paths. Hu et al. [11]
obtained motion patterns by spatially and temporally clustering trajectories using
fuzzy c-means. More Recently, Basharat et al. [12] modeled a probability density
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Fig. 2 Main steps for anomaly detection.

function at every pixel location by means of Gaussian Mixture Models (GMM),
considering not only spatial coordinates but also object sizes.

Inspired in these works, the procedure depicted in Fig. 2 is applied for each pair
(s,e)∈ SxE. Let Ts,e = {t1, . . . , tN} be the set of trajectories starting at position s and
ending at e. Each trajectory ti is represented by a sequence r(ti) of K equally spaced
control points sampled from the tracked points Ps,e = {pi1 , . . . , piK}

The input of the algorithm consists of the set of trajectories starting in an entry
point s ∈ S and ending in an exit point e ∈ E. These trajectories are represented in a
K ×N matrix, where N is the number of trajectories and K is the number of control
points that have been sampled for each trajectory. Each trajectory is associated to
one of the routes Rc that form the trajectory Ps,e. This is represented by points (k,c),
which contains the list of k-th points of all the trajectories being currently associated
to the route c.

Subsequently, the number of Gaussian components that best represent each route,
see 3 route examples in Fig. 3. The list of trajectories for each route is modeled using
a one-component and a two-component GMMs. After applying the algorithm to
each pair of entry and exit areas, M contains the set of normal paths that trajectories
should pass in the future. Thus, a trajectory deviating from M will be considered as
an anomaly.

Thus the prototype is able to differentiate among three kinds of anomaly with
respect to the current trajectory over the scenario, see Fig. 4:

• Soft Anomaly (SA): Some parts of a trajectory ta are classified as SA if they
follow a modeled path, but there are sudden changes in speed or orientation that
differ from the learnt routes from s to e.

• Intermediate Anomaly (IA): A trajectory tb is classified as an IA if the most
probable path Ps,e changes from one learnt route to another.

• Hard Anomaly (HA): A trajectory tc is classified as a HA if it has performed a
completely unobserved path. This can be caused because the trajectory started
from an entry point e/E or because the probability of any path beginning in the
actual entry point is too low for the whole scene.

This description of anomalies represents different degrees of deviation between
a new observation and the learnt model. Indeed, SA can be considered as a route
deviation inside a path. IA detects path deviations inside the same model M. Finally,
HA represents a complete deviation from M.
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Fig. 3 Learned trajectories and the probabilistic paths of three routes.

Fig. 4 Examples of the different types of anomalies detected in our prototype.

Summarizing, Fig. 5 shows the modular schema of our anomaly detector within
the Multimodal Interactive paradigm developed during the MIPRCV project.
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Fig. 5 Adaptive model for anomaly detection.

2.2 Feedback: Interaction based on Natural-Language Generation
and Understanding

Natural Language Generation (NLG) and Natural Language Understanding (NLU)
are both subfields of Natural Language Processing (NLP), which in turn can be seen
as subfields of both computer science and cognitive science [23, 6]. NLG focuses on
computer systems which can automatically produce understandable texts in a nat-
ural human language, and NLU studies computer systems which understand these
languages, see Fig. 6.(i). Both NLG and NLU are concerned with computational
models of language and its use.

In general terms, the two processes have the same end points but opposite di-
rections, see Fig. 6.(ii).Nevertheless, the internal operations of these processes hold
several differences in character. NLG has been often considered as a process of
choice, whereas, NLU has been best characterized as one of hypothesis manage-
ment. In NLG, we have several means available, and must choose the most suitable
one to achieve some desired end. In NLU, we must select the most appropriate in-
terpretation out of a multiple set of them, given some input.

Therefore, the two strategies which have been considered to design the NL in-
terface are different for the two NLG vs. NLU processes. In NLG we control the
set of situations which need to be expressed, and can define one correct form of ex-
pressing that information in a clear and natural way for each language considered.
On the other hand, the NLU process provides us with an open number of possible
user queries which need to be interpreted; we need to somehow restrict to a set of
intentions which we assume the user can show.

From a general perspective, some characteristics have been considered for NLG:
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(i) (ii)

Fig. 6 (i) Examples of interfaces exploiting Natural-Language and (ii) NLG vs. NLU processes.

• We describe situations contained in the implemented behavioral model. In our
case, the situations are those ones defined in a domain ontology and used for
behavioral analysis in Situation Graph Trees [25].

• Following the cognitive situatedness/embeddedness property, outputs have been
restricted to interpretations of the possible situations uniquely for the defined do-
main [24]. These interpretations will be expressed linguistically by native speak-
ers of each language.

• Such linguistic utterances are built and adapted into the system using rule based
parsing techniques and functional grammars [20].

• The linguistic model is based on the Prototype Theory from cognitive linguis-
tics, in which elements are categorized using sets of semantic features [22]. As
explained in some of the following chapters, this approach entails a series of
advantages, like the lack of rigidness to formalize linguistic properties, or the
interoperability of linguistic knowledge at different stages.

There are several operations fulfilled by the NLG module to generate textual de-
scriptions in NL from high-level semantic predicates [19, 21]. Basically, this module
uses two kinds of knowledge sources, ontological/situational and linguistic; three
kinds of grammar, ranging from semantic to morphological considerations; and an
onomasticon to handle the history of instantiations during a discourse.

On the other hand, NLU has usually been regarded as a process of hypothesis
management that decides for the most probable interpretation of a linguistic input.
Following this idea, the NLU module links plotline sentences to their most accurate
interpretations in the domain of interest, in form of high-level predicates referring to
known concepts or instances within the scene. In essence, we detect all valid queries
which apply to predefined goals in the domain of interest, which can be generally
classified as questions, commands, or information updates. An ontology is used to
restrict the semantic domain of validity of these queries.
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Fig. 7 Feedback model for Natural Language interaction.

Once a proper formatting has been applied, an input sentence is analyzed through
a sequence of 3 processes: first, a morphological parser tags each input word with
linguistic features depending on the context of apparition. Secondly, a syntac-
tic/semantic parser recursively builds a dependency tree for the tagged sentence.
Finally, the resulting dependency tree, already having ontological references, is as-
signed to the most related high-level predicate found [25]. The morphological and
syntactical processes convert the NL sentence into a tree representation, which is
finally converted into a goal predicate measuring the distances from the tree to the
predicates stored in the ontology. Subsequently, each plotline predicate produced by
the NLU module instantiates a high-level event, which must be converted into a list
of explicit spatiotemporal actions which are conveyed to the end-user.

Summarizing, Fig. 7 shows the modular schema of our Natural Language inter-
action within the MI paradigm developed during the MIPRCV project.

2.3 Multimodality: Animation of Virtual Avatars for
Communication with End-Users

XfacePlayer is an application designed by the Cognitive and Communication Tech-
nologies (TCC) division of ITC-irst and modified for the animation of 3D talking
heads through either the MPEG-4 Facial Animation standard or key frame interpo-
lation1. XfacePlayer relies on Microsoft’s Speech API 5.1 Text-To-Speech engine
and NeoSpeech’s Kate16 voice for speech synthesis in order to generate the voice
for the model. The version used in the VID-Hum prototype is written in java and
works in a web browser, see Fig. 8.

1 http://xface.fbk.eu/index.htm
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Fig. 8 Multimodal communication using virtual avatars: XfacePlayer interface adapted to the
xMontse model(left), and its web version (right).

Fig. 9 Multimodal interaction complete process from voice commands or queries to the response
using an avatar and a speech generation module.

From the multimodal point of view, the system depicted in Fig. 9 is a complete set
of modules that goes from recognizing the human speech to reply simulating an in-
telligent virtual human answer and/or doing some action. Voice recognition module
implements a signal (voice) to text transformation. Speech synthesis (TTS), along
with the avatar animation, implements a text-to-signal transformation. The reasoner
is designed to fit in the middle, to provide the text-to-text transformation that ap-
pears to produce an intelligent reply to the human input, and could execute some
instructions like to zoom in a pedestrian. The Avatar allows any user to see a virtual
head pronouncing any given text while displaying facial gestures and emotions.

Summarizing, Fig. 10 shows the modular schema of our multimodal model
within the MI paradigm developed during the MIPRCV project.
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Fig. 10 Multimodal model for human-computer communication.

Fig. 11 The scene is surveyed from atop the CVC building using one fixed (right one in the image)
and one active camera (left).

3 The VID-HUM demonstrator

The prototype platform has been installed on top of the CVC building in Barcelona.
The cameras survey a scene in front of the engineering building on the campus of
the Universitat Autònoma de Barcelona, see Fig. 11 for an example scene view. The
hardware platform for the VID-Hum prototype consists of one fixed camera and a
camera mounted in a pan/tilt platform and fitted with a zoom lens.

The hardware platform for the prototype consists of one fixed camera, a camera
mounted in a pan/tilt platform and fitted with a zoom lens, three dedicated servers
to provide raw computational power and a fast 1 Gb Ethernet switch. The hard-
ware integration architecture is illustrated in Fig. 12. The main components of the
hardware infrastructure are Cameras, PTZ platform, Compute Servers and Network
Infrastructure, as described next.
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Fig. 12 The VID-Hum prototype hardware infrastructure.

Two Pulnix TMC-1405GE cameras are used for the VID-Hum prototype. These
cameras are GigE-compatible and deliver very high-resolution (1392x1040) im-
agery at high framerate (30fps). Each camera is connected by a dedicated, 1000base-
TX Ethernet connection to ensure constant, high-framerate streaming from both
cameras. The connection between Servolens zoom optics and the active pc is done
by an RS-232 serial communication, at 9600 baud of speed. One of the Pulnix cam-
eras is mounted in a Directed Perception PTU-D100 pan/tilt platform that allows
350◦ pan and 180◦ tilt surveillance. It also allows a wide range of pan and tilt speeds
(0.0075◦/sec to over 120◦/sec), and is fully sealed for outdoor operations.

Three dedicated Dell Poweredge T100 servers are used. Two of these are directly
connected to the Pulnix cameras and are primarily dedicated to video acquisition.
The third server is used for components not requiring direct access to the cam-
eras, such as the supervisor tracker and SGT reasoning subsystems described below.
These three machines are referred to as Hum-Super, Hum-Static, and Hum-Active
to emphasize their roles in the prototype platform. Every computer has 3,2GB of
RAM of up to 8GB possible if was necessary, one Intel Dual Core Xeon E3120 at
3.16GHz with two processors, 300GB of Hard Disk and Ubuntu 8,10 (Intrepid) OS
with kernel 2,6,27,11-generic.

Fig. 13 shows the modular software architecture designed for the VID-Hum
prototype platform. There are two components in the prototype architecture that
greatly aided integration: the MySQL database server used to communicate between
medium-to-high-level components and the use of the Player/Stage system to provide
a layer of hardware abstraction between the VID-Hum prototype and the low-level
hardware of the cameras and the PTZ platform.
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Fig. 13 The VID-Hum prototype software architecture.

The major software components in the prototype architecture are: Video Acqui-
sition, PTZ Controller (low level), Real Time Tracker, Avatar, Trajectory Analysis,
PTZ Controller, The Reasoner, NLTG, NLTU Player/Stage Hardware Abstraction
Layer, and MySQL DBMS. A Real Time Tracker (RTT) is one of the fundamental
components in the prototype platform. The tracker software communicates through
a standardized interface, which allows the parallel development of the prototype as
well as the tracking method itself. The RTT tracks multiple moving targets in the
fixed camera view and writes its observations into a table on the MySQL server.

The main features and components of the prototype interface are:

Administration and Monitoring of Components: Given the number and diver-
sity of components in the prototype, administration and monitoring of these dis-
tributed components is one of the main functions of the user interface. The inter-
face also allows individual components or subsets of components to be tested in
isolation from the others.

Visualization of Video Streams: The largest panel in the graphical interface, in
the upper left of Figure 14, displays video streaming from one or both proto-
type cameras. Streaming video can be viewed from each camera individually, or
simultaneously in split-screen mode.

Visualization of Tracker Telemetry: When the tracker is active, the observa-
tions emanating from it are displayed in real-time, overlayed on the streaming
video from the fixed camera.

Trajectory Analysis: The module tracks people and then studies if the trajecto-
ries are normal or not, without any deterministic information of the scene, the
trajectory is classified and its result is showed in real time as an overlay to the
camera stream.
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Fig. 14 The GUI for the real-time active surveillance prototype.

Visualization of Reasoner inferences: When the reasoner component is active,
inferences coming from it are displayed in the SGT tab. The time-stamp and
predicate from each inference are displayed in a list.

Visualization of NLG: The NLG tab allows to see the texts generated from Nat-
ural Language Text Generation.

Command window for NLU: The NLU tab allows to enter commands or queries
in natural language and see its results.

Virtual Avatar: The Avatar allows any user to see a virtual head pronouncing
any given text while displaying emotions and other facial gestures in a 3D envi-
ronment. When the avatar is selected a new window appears and it tells us what
the natural language module is generating.

Summarizing, the VID-Hum prototype platform consists of many distributed
software components. So a web graphical user interface was designed and imple-
mented to organize, administer and visualize the operation of these diverse compo-
nents. Fig. 14 illustrates the VID-Hum prototype GUI. The interface allows visual-
ization of both camera streams individually or in split-screen mode which simulta-
neously streams scaled versions of both camera streams.



14 M. Castelló et al.

4 Discussion

In this chapter we have detailed a proper architecture for a multimodal video surveil-
lance application. Although the results are presented using a single outdoor scenario,
the modular design of the architecture makes our prototype suitable to be installed
in other scenarios. That means, the low-level tasks should be adapted depending on
the characteristics of the new scene, like the motion detection and tracking proce-
dures plus the design of a 3D calibrated, conceptual scene model. For example, in
our current implementation, the tracking system is unable to cope well with crowds
and multiple occlusions: therefore, the tracking strategy should be substituted if ap-
plied to scenarios with more complex pedestrian behaviours. On the other hand, the
3 types of anomalies presented in this chapter are statistically learnt from tracked
routes, so the basic procedure for detecting these anomalies would adapt well to
other scenes if tracking works well: in our particular implementation, the quantita-
tive results and details of the tracking system using in VID-Hum can be found in
[20].

The proof-of-concept in this chapter is that Natural-Language and Virtual Avatars
are appropriate when incorporating multimodality and feedback in surveillance pro-
totypes. So, regarding the high-level tasks of the prototype (NLU and NLG, for
example), these modules are independent from the scene: in these cases, since a
MySQL database server is used to communicate between tracking-to-understanding
components, modularity is granted. In addition to a proper quantitative evaluation
of the NL modules implemented in this chapter (which can be found in [5] showing
how accurate and useful a NL framework can be in surveillance scenarios), we have
shown that there are several advantages when converting numerical data obtained
from tracking to the conceptual data used by NL: dealing with abstract symbols,
generating complex queries, assisting low-level motion tasks in a top-down fash-
ion, describing high-level events, reasoning about the logic terms instantiated from
raw pixels, predicting plausible future events, etc. Basically, the use of NL makes
possible that the final output of the system is a text which not only describes, in
human-readable terms, what is happening but also explains the interactions which
take place while inferring why a particular behaviour is being detected.

Lastly, the use of virtual avatars (merging visual and acoustic features) for
surveillance purposes has several advantages, as demonstrated in [25]: we consider
the use of virtual avatars as an intelligent multimodal affective interface since it
combines speaking features like prosody, gaze and spoken words together with vi-
sual cues like head nods and lips motion. The aim in the VID-Hum prototype is
not only to perceive the virtual avatar as an intentional agent, but also in the future
as a means to evaluate the virtual agents behaviours based on the knowledge (and
experience) of the human agent.
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5 Conclusions

The ability to communicate is innate in a natural cognitive system. There exist sev-
eral ways to reach this goal artificially, although Natural Language is usually taken
as a primary choice, being a flexible, unconstrained, and economical tool that is also
intrinsic to end-users. In the MIPRCV project, we have developed linguistic mod-
ules to close the communication loop between the system and external users within
the surveillance domain.

The main procedure of the prototype described in this chapter entails: (i) adap-
tation, since the system adapts itself to the most common behaviours (qualitative
data) inferred from tracking (quantitative data) thus being able to recognize abnor-
mal behaviors; (ii) feedback, since an advanced interface based on Natural Language
understanding allows end-users the communication with the prototype by means of
conceptual sentences; and (iii) multimodality, since a virtual avatar has been de-
signed to describe, using synthetic speech, what is happening in the scene, based on
those textual interpretations generated by the prototype. Summarizing, MI provided
an adequate framework for all these cooperating processes.

In the implementation of the prototype, instrumental to the success of the inte-
gration effort was the adoption of a MySQL interface for communication between
nearly all components of the prototype platform. This, along with the adoption of
the Player/Stage hardware abstraction layer for routing video and PTZ commands,
greatly eased integration efforts. In addition to easing integration, the database of
observations preserves a complete picture of everything that happens in the scene
of surveillance, including inferences and PTZ camera actions. This, combined with
recorded video, allows detailed after-the-fact inspection of the results of cooperative
detection and recognition of human actions.
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