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Abstract

In this study we provide the analysis of eye movement behavior elicited by low-level feature distinctiveness with a
dataset of synthetically-generated image patterns. Design of visual stimuli was inspired by the ones used in previous
psychophysical experiments, namely in free-viewing and visual searching tasks, to provide a total of 15 types of stimuli,
divided according to the task and feature to be analyzed. Our interest is to analyze the influences of low-level feature
contrast between a salient region and the rest of distractors, providing fixation localization characteristics and reaction
time of landing inside the salient region. Eye-tracking data was collected from 34 participants during the viewing of a
230 images dataset. Results show that saliency is predominantly and distinctively influenced by: 1. feature type, 2.
feature contrast, 3. temporality of fixations, 4. task difficulty and 5. center bias. This experimentation proposes a
new psychophysical basis for saliency model evaluation using synthetic images.
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1 Introduction

Visual attention is the cognitive capacity of efficiently
selecting relevant visual information from a scene. Re-
searchers record eye movements in psychophysical experi-
ments using eye-tracking technology as means of identify-
ing overt attentional cues around fixation points, [Kowler,
2011]. Registered data of different subjects show different
patterns of eye movement depending on reflexive, goal-
directed or contextually-specific influences [Rothkopf et al.,
2016]. This suggests the existence of two types of general
influences in the Human Visual System (HVS), combining
both bottom-up and top-down processing [Desimone and
Duncan, 1995] [Lamme and Roelfsema, 2000] [Corbetta
and Shulman, 2002] [Fecteau and Munoz, 2006] [White
and Munoz, 2011]. Bottom-up processing of low-level vi-
sual features takes place in the early stages of the HVS,
namely, when the nervous system efficiently extracts the
basic information of the scene and processes it in the vi-
sual cortex. When higher areas of the brain are involved
is when the top-down processing occurs, by taking into
account internal state of the subject (task, mental state,
experiences, etc.).

”Visual salience is the distinct subjective perceptual
quality which makes some items in the world stand out
from their neighbors and immediately grab our atten-

tion” [Itti, 2007]. According to the saliency map hy-
pothesis, the HVS processes visual information of basic
features such as orientation, color and scale, combining
them in order to guide our attention [Treisman and Gelade,
1980] [Wolfe et al., 1989]. These visual properties can be
represented as distinct feature maps, being processed and
then integrated in what is called saliency map (represent-
ing the pre-attentive guidance as a master map), which
precedes the deployment of attention, mainly processed
by bottom-up neuronal mechanisms [Engel, 1977] [Find-
lay and Gilchrist, 2003] [Borji et al., 2013b]. When the
HVS combines both top-down (relevance) and bottom-up
(saliency) mechanisms in order to select specific target
locations of eye movements (which the superior colliculus
[SC] is responsible [Schiller and Tehovnik, 2001] [White
and Munoz, 2011]), the resulting map is termed priority
map [Egeth and Yantis, 1997].

[Koch and Ullman, 1987] outlined a common frame-
work in which feature maps are processed in parallel, open-
ing up a way to computationally extract and integrate
these distinct features captured by the HVS for visual
saliency prediction [Itti et al., 1998] [Bruce and Tsotsos,
2005]. Given the basis of this models, a myriad of new
computational models, with biological, mathematical and
physical inspiration [Judd et al., 2012] [Borji and Itti,
2013] [Zhang and Lin, 2013] [Riche and Mancas, 2016a],
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have been able to predict, to some extent, visual fixations
while observing still images [Borji et al., 2013a] [Bylinskii
et al., 2015] [Riche et al., 2013] [Borji et al., 2013c] [Bruce
et al., 2015]. The limits on the prediction capability of
these models arise as a consequence of the evaluation
from previous datasets, that do not account contextual,
perceptual, temporal and task-related biases.

1.1 Contextual Relevance

One of the properties that guide visual attention is the
contextual relevance of the observed scene [Palmer, 1975]
[Chun and Jiang, 1998] [Henderson et al., 1999] [Parkhurst
and Niebur, 2003] [Võ and Henderson, 2011] [Hwang et al.,
2011] [de Groot et al., 2016]. Semantically-relevant con-
tent or specific high-level features can generate endogenous
attentional guidance. For instance, looking at a website
promotes specific eye movement patterns that differ from
looking at a nature scene image; different scanpath pat-
terns can also be found in eye-tracking experiments while
humans observe indoor, outdoor and synthetic images. In
most datasets for saliency modeling, observers perform
free-viewing tasks with real images labeled in specific
scene context categories (either faces, cars...), without tak-
ing full account of the top-down priors influenced by the
context of the image with respect to feature contrast [Win-
kler and Subramanian, 2013] [Borji et al., 2013a], which
could bias both feature localization and discrimination
difficulty [Palmer et al., 2000] [Verghese, 2001] [Wolfe and
Horowitz, 2004].

1.2 Contrast Relevance

Eye movement behavior is influenced not only by content
and stimulus context, but also by the human perceptual
capabilities for distinct contrast adaptation and discrim-
ination [Nothdurft, 2000] [Pashler et al., 2004] [Pestilli
et al., 2007] [McDermott et al., 2010] [Hart et al., 2013].
Other perceptually-relevant factors could also be related
either to the lighting conditions used in each experiment,
the starting point of view when perceiving stimuli, etc.
The evaluation of relative distinctiveness between features
at distinct regions of the image is needed to be done in
order to analyze each image according to its spatial prop-
erties and feature specificities. This suggests that each
image promotes distinct saliency.

1.3 Temporal Relevance

Eye movements have been shown to have temporal influ-
ences, varying its behavior upon viewing time or number
of fixations (e.g. showing decreasing saccade amplitude,
increasing fixation duration [Follet et al., 2011] [Antes,

1974] or higher inter-participant differences [Tatler et al.,
2005] [Rothkegel et al., 2017]), suggesting the idea that
saliency influences more early saccades than late view-
ing saccades [Parkhurst et al., 2002] [Tatler et al., 2005]
[Zhaoping, 2012] [Zhaoping and Zhe, 2015]. Most saliency
predictions based on eye tracking data do not evaluate the
temporal relevance in relation to the saliency elicited by
the scene, being for most cases, evaluated spatially across
all fixations.

1.4 Task Relevance

Alfred Yarbus’ seminal work revealed differences in eye
movement patterns [Yarbus, 1967] caused by certain top-
down influences such as previous experience, motivation
and other endogenous factors. Distinctive studies have
also concluded that task priors are decisive in that re-
spect [Buswell, 1935] [Navalpakkam and Itti, 2005] [Tatler
et al., 2006] [Castelhano et al., 2009] [Greene et al.,
2012] [Borji and Itti, 2014]. Goal-directed tasks proved
to be able to condition eye movement behavior enhanc-
ing visual attention processing [Posner, 1980] [Jonides,
1981] [Huk and Heeger, 2000] [Kurtz et al., 2017]. That
might suggest that visual search tasks could minimize such
eye-movement patterns produced by endogenous top-down
mechanisms [Horowitz and Wolfe, 1998] [Wolfe, 1998],
by increasing induced attention towards salient targets
(combining both saliency and relevance to influence eye
guidance towards these regions). Thus, for all tasks, there
is an induced top-down processing that tune overall vi-
sual priority when recording eye-movements [Henderson
et al., 1999] [Jonides, 1981] [Desimone, 1998], given both
exogenous and endogenous influences. Such design puts
forward that there could be a better computational es-
timation of saliency if such task-related influences were
focused uniquely on the regions that pop-out on the scene.

1.5 Center bias

Eye movement datasets built for the assessment of saliency
models tend to be center biased, not only because of scene
framing (photographies tend to focus the salient region in
the center of view) but also because of the specific task
and stimuli, whereof top-down modulatory constraints
are enough to prevent attentional shift, giving a trend to
promote center biases [Borji and Tanner, 2016] [Mannan
et al., 1996] [Vincent and Tatler, 2008] [Clarke and Tatler,
2014] [Rothkegel et al., 2017], not only in oculomotor
terms but also in tendencies in experimentation of eye
movement behavior. As aforementioned, bottom-up and
top-down processing of the stimuli will depend on the
feature characteristics from the scene. If these are simpler,
the contextual influence will be lower, making the indica-
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tors of saliency easier to analyze [Tatler, 2007] [Vincent
and Tatler, 2008]. There will be an endogenous top-down
attentional modulation whether the stimulus is cued or
uncued. For concrete salient stimuli, facilitating atten-
tional guidance by inducing specific endogenous cues could
enable the selection of specific regions of interest in order
to prevent the aforementioned factors that generate these
center biases.

Objectives

Acknowledging the aforementioned problems on capturing
bottom-up visual saliency, we have decided to create a
dataset with synthetic images, lacking the presence of
high-level features, promoting saliency uniquely elicited
from low-level features (providing as well a synthetic im-
age generator code). An alternative evaluation of saliency
proposed, by measuring eye movements upon low-level
feature distinctiveness and their temporality. Fixations
and saccades will be evaluated individually with the corre-
sponding stimuli on free-viewing and visual search tasks,
with different feature types and distinct target-distractor
feature contrasts.

In order to vary the level of saliency of specific fea-
tures in a scene, a parametrization of the distinctiveness
between a specific item and a set of distractors or its
surrounding background is needed. By parameterizing
feature contrast, it is possible to analyze feature search
efficiency, its accordance with the Weber Law, and the
effects in which search asymmetries apply. Using synthetic
images in eye-tracking experiments, the complexity of the
image features is reduced by minimizing any top-down
contextually-related effect, putting forward an easier and
more accurate evaluation of eye movement behavior. By
modeling stimulus areas of interest for selected pop-out
targets, it it possible to test participants performance
on landing inside salient regions and their eye movement
patterns (in the extent of fixation duration and saccade
amplitude) for distinct feature contrasts, and their tem-
poral evolution. This will allow us to observe whether
low-level features influence visual attention in a distinct
manner.

Previous experiments that perform psychophysical
tests evaluating human visual performance on distinct
low-level features (iLab USC [Itti and Koch, 2000], UCL
[Zhaoping and May, 2007], VAL Harvard [Wolfe et al.,
2010] and ADA KCL [Spratling, 2012]) show that the
distinctiveness between a specific region and the rest of
distinct regions of an image progressively increases the
level of saliency in relation to feature contrast. However,
the presence of much less relevant features distorts the
overall distinctiveness of a specific region with respect
to the rest, thus, affecting to the bottom-up visual guid-

ance towards the salient region. With the aforementioned
datasets (Table 1), feature contrast and stimulus condi-
tions has been parametrized with search tasks (using the
button trigger for calculating search reaction times) but
no eye tracking experimentation has been done.

Table 1. Characteristics of datasets with syn-
thetic/psychophysical pattern images

Dataset Task # SS # PP PM
MIT* FV 3 15 7

CAT2000* FV 100 18 7
iLab USC - ˜540 - 3

UCL VS & SG 2784 5 3
VAL Harvard VS 4000 30 3

ADA KCL - ˜430 - 3
SID4VAM (Ours)* FV & VS 230 34 3

SS: synthetic stimuli, PP: participants, PM: Parametrization,
FV: Free-Viewing, VS: Visual Search, SG: visual segmentation
*: Fixation data is available online

For few eye movement datasets that contain synthetic
images (MIT [Judd et al., 2009] and CAT2000 [Borji and
Itti, 2015]), no parametrization of feature type or contrast
was done. Contrary to other saliency datasets [Bylinskii
et al., ], in this study it is possible to evaluate each of
these factors individually and exclusively eye movement
data is being used for calculating search performance for
better accuracy. We will test the following hypotheses:

1. Performance on salient region localization could
show differences upon varying the type of features
present in our stimuli.

2. If feature contrast is the main factor that contributes
to saliency, performance on localization of salient
regions should correlate with feature contrast, spe-
cially for stimuli that require a serial ‘binding’ step.

3. Acknowledging that saliency is usually evaluated
across all fixations on eye tracking experimentation,
if a temporal bias exists and is increasing, it is highly
possible that the first fixations show higher saliency
index than the late ones.

4. If performance on salient region localization with
free viewing tasks is lower for stimuli with higher
contrast compared to visual search tasks, it will
mean that fixations on free viewing tasks are highly
guided by endogenous attention.

5. Previous datasets used for saliency prediction do
not show how their center biases affects saliency.
We will show how eye movement patterns influence
the center bias for this dataset and if the bias in-
creases or decreases across viewing time and feature
contrast.
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Our objective is to allow computer vision researchers to
reproduce these influences when modeling eye-movement
prediction algorithms. Here we present a dataset in which
we evaluate through free-viewing tasks the influence of
the features that affect the spatial properties of an image
(from the perception of Corners, Segments, Contours and
Grouping) and how the relative distinctiveness from a
search target is more salient with respect to a set of dis-
tractors that differ from specific low-level features (color,
orientation, size...). Analyzing low-level features individu-
ally would allow us to see which features generate more
agreement on saliency measures and are localized faster,
in that manner, to allow their modeling according to their
distinct neuronal mechanisms. This study can be used
for a more plausible and specific saliency modeling given
the presented eye-movement patterns, also extrapolable
to the analysis of the interactions between these features
or to study specific cases of high-level features in future
studies.

2 Materials and Methods

2.1 Participants

Thirty four subjects (11 female and 23 male) with normal
or corrected-to-normal vision took part in this experiment.
Most participants were postdoc scholars and PhD students
(aged 21–47 years) from non-related fields of study. No
economic compensation for the experiments was given.
Participants were allowed to wait until they were comfort-
able with the eye tracking experimental setup in case they
had any kind of visual discomfort in between sessions, and
they were allowed to adjust the chair while laying on the
chin-rest before the experiment. Participants had to sign
a consent form allowing the anonymous usage of the data
captured during the experiment.

2.2 Apparatus

The set of stimulus was presented on a LCD moni-
tor (Samsung SyncMaster HMAQ935729) of screen size
340x270 mm, a resolution of 1280x1080 px and a refresh
rate of 60 Hz. A color calibrator was used (Xrite i1 Display
Pro) in order to set a specific luminance for the monitor of
160 cd m−2, achieving the CIE Illuminant D65 according
to the ISO 3664:2000 standard condition (and recom-
mended by Adobe RGB 1998 CIE and ITU-R BT.500-11)
with the whitepoint at x=0.313, y=0.329 and a gamma
value of 2.2. The light conditions of the room were set
using non-direct adjustable light, measured at 30 lx using
a luxmeter (TES1332).

We have used a SMI RED binocular eye tracker with a
tracking resolution of <0.1 deg, gaze position accuracy of
<0.5 deg and a sampling rate of 50 Hz, set at a distance of
600 mm towards the chin-rest (about 40 pixels per degree
of visual angle) and vertically equidistant with respect to
the monitor, forming a slope of 19 deg from the horizontal
axis. The monitor’s screen was at a vertical distance of
195 mm from the table and the observer’s point of view
was adjusted to be centered towards the screen. Fixation
and saccade detection was based on SMI iView X Event
Detector software, capturing fixations at a minimum du-
ration time of 80 ms and maximum dispersion threshold
value of 2 deg and saccades at a peak velocity threshold
of 75 deg /s [Salvucci and Goldberg, 2000] [SMI, 2009, p.
243-247].

2.3 Procedure

The experiment was divided in one training and two full
sessions. During the training session each participant per-
formed a visual search task with 4 types of stimulus with
feature and conjunctive search, combined with present
and/or absent search targets, hence to ensure their good
performance in the next sessions. The first session had
a duration of about 20 minutes and was divided in 8
blocks, each one corresponding to a free-viewing or vi-
sual search task. The second session had a duration of
about 25 minutes and was divided in 10 blocks, similar
to the first session. Each task in a block correspond to
a distinct stimulus type (shown in Section 2.4) that was
presented in a random order. Stimulus order was also
randomized across blocks (to avoid any stimulus-related
priming [Kristjánsson and Driver, 2008]), and the location
of target distractors was distinct for each case in order to
prevent oculomotor biases.

Participants performed two types of tasks: free-viewing
and visual search (Figure 1). During free-viewing tasks,
they were instructed to freely look at the stimuli during
5000 ms. For the visual search task, they were instructed
to look for a specific target previously shown in an instruc-
tion slide. In case they could find the target, they had to
steer their gaze towards it during a dwell time of 1000 ms
(the area of interest was based on the target area with
an horizontal and vertical spacing of 1 deg). In case they
could not identify the target, they were instructed to press
a specific key. Considering that context was distinct for
each block (replicating stimulus characteristics from pre-
vious studies), we decided to do a template target search
task instead of an odd-one-out type of task [Bacon and
Egeth, 1994] [Theeuwes, 2004]. Participants had unlimited
time for the visual search tasks, in this case for reporting
target identification or absence. Transitions between stim-
uli had a duration of 2000 ms (blank transition without
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the presence of an onset cue) with a luminance equal to
the stimuli in order to preserve participant’s luminance
and chromatic adaptation.

Free-viewing Visual Search

Figure 1. Procedure for the presentation of the stimuli
for each task type.

Mean pupil size was recorded to be 2.98 mm diameter
for all samples and there was a standard error of 0.18 mm
mm between stimulus type, being almost constant through-
out the experiment with no significant stimulus-related
luminance imbalance.

A 12 point calibration procedure was performed before
each session, in which participants were instructed to gaze
a red dot moving along different directions. The calibra-
tion showed mean deviations for all sessions of σx=0.57,
σy=0.75 deg for the left eye and σx=0.56, σy=0.82 deg for
the right eye. Deviations for each participant’s fixation
and saccade data were computed using the data of the
participant’s eye that presented minimum deviation from
calibration points in each session. We did a pilot experi-
ment with 4 participants in order to correctly design the
visual search procedure, thus, to test the final experimen-
tal design for trigger timing and the difficulty of the tasks.
That allowed us also to correctly parametrize the vari-
ables corresponding to target-distractor contrast where
the target was too hard to identify, this parametrization
will be shown in the next section.

2.4 Stimuli

A total of 33 types of stimuli were generated, correspond-
ing to 15 distinct feature evaluations (5 of them using free-
viewing tasks and 10 for visual search tasks) at distinct
conditions. During free-viewing experiments, we evaluated
how spatial properties influence saliency, namely, the ca-
pabilities of humans for detecting corners, segmenting and
detecting contours as well as localizing groups of objects
according to their similarity and spatial distribution (Ta-
ble 2). This will give some insight of how rapidly humans
reflexively perceive and bind spatial properties from the
features of an image. In visual search tasks, we evaluated

the speed in detecting specific features and the amount
of saliency produced by target-distractor feature contrast
characteristics. In that aspect, stimulus were generated
with features that pop-out based on their dissimilarities
in orientation, color and size. Besides, we also analyzed
influences of the guidance prompt from the amount of
distractors on the scene, their configuration as well as the
influence of background lightness, color and roughness
(Table 3).

Stimulus design was was inspired by Spratling’s exper-
iments [Spratling, 2012], by generating synthetic images
similar to the ones from Li and May’s psychophysical ex-
periments [Zhaoping and May, 2007]. Most stimuli items
had a size of 1.5 deg, occupying a region of 2.5 deg in-
cluding the spacing between distractors. In that manner,
stimulus had an available grid of 10× 13 distractors. Dis-
tractors were black (lsY = 0, 0, 0), and background was
plane white (lsY = 0.6548, 0.0175, 1). We used Spratling’s
code and we adapted it in order to also use any distrac-
tor shape, displacement and chromatic parameterization,
downloadable at https://github.com/dberga/sig4vam.

Ψ(x) = { x− 1

N − 1
| x ∈ N}, (1)

Ψ(x, v) = {v ·Ψ(x)}, (2)

Ψ(x,min,max) = {Ψ(x,min) ∪Ψ(x,max) |x is odd}.
(3)

The parameters of the generated stimuli were set ac-
cording to ”N = 7” contrast values (ranging from 0 to
1), using the Weber’s law uniform fraction in order to
set discrete target-distractor evaluation ”x = 1...N” for
the psychometric function Ψ. For each stimulus type on
our experimentation, parameters are set according to spe-
cific values of Ψ(x). We have the expression in Equation
1 and 7 contrast values in order to have extreme con-
trast values (no contrast and maximum contrast) with
”Ψ(1) = 0” and ”Ψ(7) = 1” as well as a middle value
with ”Ψ(4) = 0.5”, making the difference between the
second lower contrast and the second maximum contrast
at the same distance from the extreme contrast values
|Ψ(2)−Ψ(1)| = |Ψ(7)−Ψ(6)|. In that manner we provide
a psychometric function with a constant slope (Weber’s
uniform fraction). Absolute values of contrast can be
adjusted to fit a specific value of ”v” as Ψ(x, v) (Equation
2). For cases that we had higher and lower contrasts with
respect the target and overall distractors we adjusted the
values for maximum and minimum range of the psychome-
tric function Ψ(x,min,max) as the union of odd values for
both sets of Ψ(x,min) and Ψ(x,max) in order to acquire
the same set of contrast values (Equation 3).

Acknowledging that each stimulus was distributed ac-
cording to different contrasts depending on the evaluation
parameter, each stimulus was categorized as easy and
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hard depending on the assigned contrast (half of them as
easy for higher contrasts, and half of them as hard for
the case of lower contrasts, with a specific case with mini-
mum or no contrast). One of our interests was to evaluate
how low-level features modify the spatial layout between
the features on a scene, therefore its spatial properties,
affecting visual saliency (in this case with free-viewing ex-
perimentation). In order to accurately evaluate low-level
feature distinctiveness, visual search tasks were performed,
having a search target with a specific low-level contrast
with respect to a set of distractors. The stimulus design
corresponding distinctively to each feature and task will
be explained as follows.

2.4.1 Free-viewing task stimuli

First, we wanted to evaluate the spatial relevance of cer-
tain regions of an image. For this stimuli, visual selection
cannot be focused on a unique region due to the size
and/or spatial organization of the elements in the image.
Humans have a limited central vision, namely, they need
several fixations over the whole region in order to attend
to all of the relevant regions in detail. In that aspect,
each of the spatial properties will guide attention towards
a single or several spots depending on the analyzed fea-
ture. With this type of stimuli it is be able to see the
temporal and spatial performance of perceiving bound-
aries due to corner sharpness, segment angle and spacing
as well as preemption and grouping [Rensink and Enns,
1995] [Rensink and Enns, 1998] [Wolfe et al., 2011], effects
induced by distractor continuity, proximity and similarity.
These preattentive effects are not equally processed in the
visual system in the same way as shown for parallel visual
search [Wolfe, 1992]. Task was separate for the aforemen-
tioned perceptual phenomena with respect to searching
for a specific feature, stimuli described on Section 2.4.2.

Corner Angle (1) Troncoso et al’s psychophysical ex-
perimentation found that corner salience was higher on
sharp corners than on shallow corners or edges [Troncoso
et al., 2005] [Troncoso et al., 2009]. This effect could be
explained by ON-center receptive field behavior towards
corner stimuli [Rodieck, 1965], being sharp corners the
ones that produce higher neuronal activity. Original stim-
uli from Troncoso’s experiment was used, generating cor-
ners with a dark-to-white gradient and an upwards angle,
corresponding to corner angles of 180, 135, 105, 75, 45, 30
and 15◦ (shown in Figure 2). The horizontal alignment of
the corner was randomized in order to prevent oculomotor
anticipation.

15o 30o 45o 75o 105o 135o 180o

Figure 2. Examples of corner angle slopes (with the
sharper at 15◦ and the smoother at 180◦) for dark-to-
bright gradient stimuli with upwards angles.

Visual Segmentation Distinctiveness between two ho-
mogeneous regions creates higher neural activity near re-
gion boundaries than away from them [Li, 1999] [Li, 2000].
In this section is described how an illusory boundary is
generated by varying two segment characteristics. This
effect is distinct from the concepts of edge or boundary
detection (terms used as well in the image segmentation
literature) or contour integration. This phenomena proves
that illusory boundaries pop-out due to the perceptual
breakdown of homogeneity. Here it is studied the influence
of angle contrast between these two segments (creating a
salient boundary dependent on the segments angle) with
an homogeneous single set of bars as well as with super-
imposed bars. Here is also analyzed the influence of bar
spacing and length on detecting the illusory boundary
between these two segments.

Segmentation by Angle (2) Visual angle contrast
between two segments can induce edge detection and there-
fore visual saliency towards that illusory edge [Nothdurft,
1991] [Wolfson and Landy, 1995] [Zhaoping and May, 2007].
The resulting saliency would increase with respect to angle
contrast from the two segments on the region that sepa-
rates them [Spratling, 2012]. It is a distinctive effect from
orientation feature detection upon a set of distractors, that
is described on Orientation Contrast (12), Distractor Het-
erogeneity (13), Distractor Linearity (14) and Distractor
Categorization (15).

Φ(v, a) = {| arcsin(Ψ(1...N, v)) + a|}, (4)

∆Φ(v, a, b) = min{|b− Φ(v, a)| , 180− |b− Φ(v, a)|},
(5)

The psychometric values for determining angle values
are defined as Φ(v, a). Here ”v” is the incremental fac-
tor for adjusting the maximum angle for our set Ψ(x, v)
and ”a” is the starting angle value for our bar orientation
(Equation 4). The angle contrast between a specific angle
”b” and our set of angles Φ(v, a) can be computed with
∆Φ(v, a, b), considering that our bar orientations have
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Table 2. Description of the generated stimuli for the experiment using the free-viewing task. Stimulus have been
divided in ”Stimulus type” according to the type of feature or effect that is analyzed and ”Stimulus subtypes” for the
cases that there are presented distinct conditions using the same feature contrast. The total number of elements has
been selected according to the stimulus characteristics, preserving similar spatial properties to the ones presented on
the literature.

# of stimuli Stimulus type Stimulus subtypes Parametrized Feature Contrast Total # of elements
7 Corner Angle (1) Sharpness Orientation 1

14 Segmentation by Angle (2)
Single

Segment Orientation
10× 13 (130)

Superimposed 20× 26 (520)
7 Segmentation by Spacing (3) Bar Length and Spacing 10× 13 (130)
6 Contour Integration (4) Bar Continuity 10× 13 (130)

14 Perceptual Grouping (5)
Similar

Distractor Proximity ∼40
Dissimilar

upwards and downwards contrast for its comparison (due
to its symmetry), contrast is calculated as the minimum
from the differences from two quadrants in which these
bars can be oriented (Equation 5).

Stimuli was based on Spratling’s visual segmentation,
using 2 sets of bars (shown in Figure 3(a,b)) oriented
respectively using angles Φ(1, 0) and ”b = 90”, forming a
relative contrast of ∆Φ(1, 0, 90). For the case of superim-
posed bars, we have created a composite of the same bars
adding a bar tilted at 45◦ with respect to each segment.
Here are accounted the contrasts between the new super-
imposed bars and the original segment ∆Φ(1, 45, 90). The
location of the vertical segment was randomized on the
horizontal axis for each stimulus.

(a) (b) (c)

Figure 3. Examples for visual segmentation stimuli. (a)
Corresponds to the segmentation by angle with a single
segment and (b) to superimposed segments (with both
cases with an orientation contrast of ∆Φ=90◦. In (c) seg-
mentation is done distinctively (by changing bar length),
using bars oriented at 45 and −45◦ with a bar length of 1
deg and a segment spacing of 2.5 deg.

Segmentation by Distance (3) Texture discrimi-
nation was shown to vary according to the spacing and
length of the texture elements [Nothdurft, 1985] [Spratling,
2012], making it harder as element spacing increases (as
when segment elements decrease in length or size). Visual
segments were modeled using 2 sets of bars, oriented re-
spectively at 45◦ and −45◦ (a relative angle contrast of
90◦). Here we question how bar length is able to generate
a specified distance at the center of the illusory segment.

Segment spacing was calculated as the euclidean distance
from the end of the first segment bar to the beginning of
the second segment bar, with values of 0 to 2.5 deg (shown
in Figure 3(c)), corresponding respectively to a bar length
of 1 to 3.6 deg deg in the horizontal axis.

Perceptual organization Perceptual organization has
been previously investigated and promoted by Gestalt
principles, guided by proximity, similarity, continuity, and
closure properties of objects [Koffka, 1935] [Wertheimer,
1938] [Field et al., 1993] [Caputo, 1997] [Rubin, 2001].
Here are described two effects related to perceptual organi-
zation, parametrized upon the aforementioned principles.

Contour Integration (4) Continuity within set of
features in a scene is able to generate the perception of a
contour [Hess et al., 2003], considering that a larger set
of collinear bars facilitate its detection. Accounting for
saliency being influenced by contour integration [Li and
Gilbert, 2002] [Dakin and Baruch, 2009] [Spratling, 2012],
a set of stimuli was created with a grid of randomly ori-
ented and equidistant bars and a collinear contour (Figure
4(a)). Contours were generated with a length of 3, 5, 7, 8, 9
and 10 collinear bars, corresponding to 7.5 to 25 deg.

Perceptual Grouping (5) Adding up to the basis
of the previous section, we have also studied the rela-
tion between perceptual grouping principles and visual
attention. According to the literature, the spatial layout
can facilitate or prevent contextual cueing [Bhatt et al.,
2007] [Conci et al., 2013], in particular, the lower the
proximity between a number of randomly distributed ob-
jects and a group, the higher the saliency on the grouping
region [Nothdurft, 1985] [Ben-Av et al., 1992] [Ben-Av
and Sagi, 1995] [Rideaux et al., 2016]. Given that, here
the analysis is on the influence of proximity and similar-
ity among objects in a specific spatial organization. To
do so, there were generated a set of shapes, randomly
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distributed and located at specific distances to a group,
with similar and dissimilar shapes Figure 4(b,c). The
proximity parameter was the euclidean distance between
the group centroid and the rest of distractors, forming
a wider gap between the distractors and the group as
we increase distance, parametrized as Ψ(1...N, 2.5, 7.5).
Stimulus shapes were set to be symmetric in order to
prevent orientation-variant guidance, with squares as the
main shape for both group and distractors in the case of
similar object condition, whereas in the case of dissimilar
condition were selected triangle shapes for the distractors
and squares for the group.

(a) (b) (c)

Figure 4. Examples of distinct perceptual organization
effects, eliciting Contour Integration (a) formed by 10
collinear bars (corresponding to 25 deg) and Perceptual
Grouping for similar (b) and dissimilar shapes (c) with
respect a group set at a distance of 7.5 deg from the rest
of distractors

2.4.2 Visual Search task stimuli

Visual search tasks were performed with another set of
stimuli. In this case, a unique target item with a specific
size was used. In that manner, it is possible to change
either the amount of distractors, their spatial configura-
tion, the target-distractor feature contrast and background
properties of the stimulus. Most target elements overall
occupied a small area of interest in order to able to be
preserve same fovea-dependent capabilities for each type
of stimuli used with this type of task. Hence, using this
experimentation we can observe which features pop-out
faster and more often (in parallel or ”effortlessly”). As
small regions away from central vision cannot be detected
as in the case of bigger regions shown on Section 2.4.1,
the guidance towards the salient target (distinctive from
the rest of distractors) minimizes other type of guidance
promoted from endogenous factors.

Feature and Conjunctive Search (6) Feature search
increases probability and efficiency of saccading towards
a specific search target on scene observation due to its
unique distinctiveness. The information span processed by
the HVS varies depending on the amount of feature distrac-
tors to be processed [Treisman and Gelade, 1980] [Pashler,
1988] [Wolfe et al., 1989] [Palmer, 1995] [Wolfe and Ben-

nett, 1997] [Hayward and Burke, 2000] [Nothdurft, 2000].
Given that premise, the amount of objects in a scene
would imply a variation of the difficulty towards searching
a specific target for the case of serial search (distorting
human’s sustained attention), but not for the case of par-
allel search. Previous experiments show that difficulty on
visual search is higher with a conjunction of distractors
with different image features (such as size, color or orien-
tation). In case distractors vary only by a unique feature,
the difficulty of the task would not be as evident as the
other case [Nakayama and Silverman, 1986] [Treisman,
1988] [Wolfe, 1994] [Flombaum, 2015]. In order to repro-
duce feature and conjunctive search, target was a red bar
oriented at 45◦. For the feature search case, distractors
were green and set at 45◦ (Figure 5). On the case of
conjunctive search, half of distractors were green and set
at 45◦ and the other half were red and oriented at −45◦.

(a) (b)

(c) (d)

Figure 5. Examples used for feature and conjunctive
search. Here are presented the cases of having a red target
oriented at 45◦ and 34 distractors randomly displaced
around the scene. For the feature search case (a), all
of the distractors are distinct in color (green). For the
conjunctive search case (b), 50 % of the distractors are
distinct in color (green) and the rest are distinctive in
orientation (at an orientation of −45◦). The same cases
(c) and (d) are shown but without the presence of the
target.

The position of the items was randomised, with a set
size of Ψ(1...N, 2, 34), the amount of distractors ranged
from 2 to 34 distractors. Both search conditions without
the presence of the target was introduced in order to see
if the effects are also reproduced for the case of reporting
absence of target. The design of feature and conjunc-
tion search has been defined as keeping similar difficulty
between the two conditions, preserving identical targets
and displaying each conjunction of distractors maximally
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Table 3. Description of the generated stimuli for the experiment using the Visual Search task. The total number of
elements has been selected according to the amount of distractors presented on the scene acknowledging that one of
the elements is presented to be the search target.

# of stimuli Stimulus type Stimulus subtypes Parametrized Feature Contrast Total # of elements

28 Feature Search (6)

Feature

Distractor number 3 to 35
Conjunctive

Feature-absent
Conjunctive-absent

14
Search Asymmetries (7) Bar presence

Scale and Distractor number 35 to 520
Bar absence

14 Noise/Roughness (8)
Higher deviation

Surface Roughness 1
Lower deviation

28 Color Contrast (9)

Red target and Unsaturated Background

Distractor Saturation 34
Red target and Oversaturated Background
Red target and Unsaturated Background

Blue target and Oversaturated Background

14 Brightness Contrast (10)
Light Background

Distractor lightness 34
Dark Background

7 Size Contrast (11) Target Size 34
7 Orientation Contrast (12) Target Orientation 34

21 Distractor Heterogeneity (13)
Homogeneous

Target Orientation 10× 13 (130)Tilted-right
Flanking

28 Distractor Linearity (14)

Linear

Target Orientation 10× 13 (130)
Nonlinear at 10o of slope
Nonlinear at 20o of slope
Nonlinear at 90o of slope

21 Distractor Categorization (15)
Steep

Target Orientation 10× 13 (130)Steepest
Steep-right

dissimilar from each other [Quinlan, 2003].

Search Asymmetries (7) Search asymmetries be-
tween two different type of stimuli happen when a specific
target of type ”a” is found efficiently among distractors of
type ”b”, but not in the opposite case (searching for ”b”
among distractors of type ”a”) [Treisman and Souther,
1985] [Treisman and Gormican, 1988] [Hayward and Burke,
2000] [Wolfe, 2001]. Clear evidence was found for plain
circles crossed by a vertical bar (Figure 6) at a scale of
5 deg), showing that it was easier to find a circle with a
vertical bar among plain circles than vice versa [Wolfe,
2001] [Spratling, 2012].

(a) (b)

Figure 6. Example of stimulus types in which search
asymmetries can apply. The context of circles (b) facili-
tates the search of a superimposed bar compared to the
reverse case (a).

The same type of stimuli was selected (with both con-

ditions: searching a circle crossed by vertical bar among
plain circles and searching a plain circle among circles
crossed by a vertical bar) filling a grid of distractors ac-
cording to a specific scale and randomizing the position
of the target. The scale values were Ψ(1...N, 1.25, 5), be-
tween 1.25 and 5 deg, changing the amount of items to
be presented, being in each case from 35 to 520 elements
corresponding to arrays of 5 × 7, 6 × 8, 8 × 10, 10 × 13,
15× 20 and 20× 26 objects.

Noise/Roughness (8) For most synthetic stimuli we
have considered uniform and plain backgrounds with ho-
mogeneous illumination, but in this case the influence of
continuous textured background would increase or reduce
search time required to detect a specific target depending
on the amount of noise present in the scene. Clarke et.
al. [Clarke et al., 2008] [Padilla et al., 2008] [Clarke et al.,
2009] showed that the higher the level of background tex-
ture noise of a scene, the higher the level of difficulty of
the search task. They represented the background sur-
face as a height map by parameterizing an isotropic and
random-phase noise 1/fβ (being ”β” the frequency roll-off
magnitude factor of the inverse discrete Fourier transform
of the height map and ”σRMS” the deviation of the rough-
ness noise height). The surface was obtained by rendering
the height map according to the Lambert’s Cosine Law
model using a constant light source with slant of 60◦ and
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tilt equal to 90◦. Given these previous experiments, each
stimulus was a rough surface considering β as the con-
trast value Ψ(1...N, 1.5, 1.8) with two distinct conditions
by using deviations of σRMS= 0.9 and 1.1. A similar
target of Clarke’s experimentation was used (Figure 7)
with a circular shape and a vertical gradient background
corresponding to the height of the surface and a diameter
of 0.78 deg (half of size corresponding to the rest of target
items of this study, adjusted for preventing too low RT
differences between distinct contrasts).

(a)

(b)

Figure 7. Two examples of a rough surface with β = 1.8
using height deviations of (a) σRMS = 0.9 and (b)
σRMS = 1.1

Distractor similarity When an object is dissimilar
to the rest of objects in a scene, the search of that ob-
ject is more efficient. That phenomenon is called target-
distractor similarity, and has been found to occur when
parameterizing specific features such as color, shape or
size [Duncan and Humphreys, 1989] [Wolfe, 2010].

Color Contrast (9) In this section the chromatic prop-
erties of distractors are changed, as well as the background
of the stimuli Figure 8. As shown in previous experi-
ments [D’Zmura, 1991] [Bauer et al., 1996] [Amano and
Foster, 2014] [Danilova and Mollon, 2014], color varies
spatial and temporal patterns of eye movements, affecting
both localization and discrimination of objects. Besides,

search asymmetries happen at different background con-
ditions [Nagy, 1999] [Rosenholtz et al., 2004].

(a) (b)

(c) (d)

Figure 8. Examples of the 4 conditions at maximum con-
trast of ∆SD,T=1, representing the values of Saturation
and Lightness on each particular stimuli for each target
and background configuration (showing as well the ”l” and
”s” chromaticities in the lsY space [MacLeod and Boynton,
1979] at 400 nm). In (a) and (b) there are represented the
stimulus for grey (unsaturated) and red (oversaturated)
background respectively. Similarly, but for blue targets,
are represented the cases for both background conditions
in (c) and (d).

Taking into account these experiments, we wanted
to analyze if these search asymmetries are present when
varying saturation of distractors with respect to a search
target. We will see if these differences between distractor
and search target are affected by changing background
saturation at distinct target and distractor hue (using the
HSL color space). A set of stimulus was generated with
circular shaped items with a similar displacement to Rosen-
holtz experiment. Stimulus was sorrounded with a vertical
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∆S1,2 = |S1 − S2|,
∆L1,2 = |L1 − L2|,

(6)

α = arctan(
∆LT,B
∆ST,B

), (7)

θ = (90− α)(Ψ(1...N)), (8)

β = (90− α)(1−Ψ(1...N))

≡ 90− θ − α

≡ arctan(
∆SB,D
∆LB,D

),

(9)

∆SD,T = |ST − SD|
≡ |∆SB,T −∆SB,D|

≡ |∆SB,T − (∆SB,D · tan(β))|,
(10)

SD =

{
ST −∆SD,T if ST > SB

SB −∆SD,T otherwise
(11)

Figure 9. Representation of HSL values
for distinct distractors (D), background (B)
and search target (T).

padding equal to the presented background in order to pre-
vent monitor-related luminance gradients. Contrast values
can be calculated according to the saturation differences
between the search target (T) and distractors (D). Two
background (B) conditions were defined, corresponding to
Grey (achromatic and unsaturated), and Red (chromatic
and oversaturated) colors. At isoluminant (LD,T=0.75)
and isohue conditions (HD,T=0◦ for red and HD,T=240◦

for blue distractors), a representative measure of color con-
trast between the target and distractors can be computed.
This measure was named θ, being the angle between the
search target and distractors, with the background as the
vertex of the intersection. Same trigonometrical properties
can apply using the same diagram plotting B,T and D
relationships at distinct quadrants (acknowledging that in
our case T is oversaturated for both conditions).

In Equation 6, is represented the absolute difference in
lightness and saturation between two distinct conditions.
In Figure 9 there are the angles that comprise the satura-
tion and lightness contrast between our stimulus objects.
Each of these angles represent respectively to the triangles
formed by B-T (α), B-D (β) and D-T (θ), being α constant
for constant background and target (Equations 7, 8 and 9).
Most importantly, θ represents the angle comprising the
available contrast between the distractor and the target.
Given these angle calculations, it is possible to represent
the ∆SD,T as the absolute saturation difference between
D and T (Equation 10), calculated by the parametriza-

tion of β using our psychometric function Ψ(1...N). That
absolute saturation difference will define the criterion for
our distractor saturation SD as shown in Equation 11.
There were generated 4 experimental conditions corre-
sponding to unsaturated and saturated background and
red or blue hue. The value of θ is equivalent for saturated
and unsaturated background, corresponding to values of
0, 9, 18, 35, 44 and 53◦, producing saturation differences
(∆SD,T ) of 0, 0.121, 0.246, 0.528, 0.728 and 1.

Brightness Contrast (10) According to previous stud-
ies, searching a bright target is harder as luminance
of distractors increase [Pashler et al., 2004] [Nothdurft,
2006b] [Spratling, 2012], with a distinct response with
respect to chromatic stimuli [Nagy, 1999]. Conversely,
salience increases for a dark target when luminance of dis-
tractors is increased. It was parametrized as the lightness
contrast and stimuli was modeled using the HSL color
space, considering an achromatic (unsaturated) and iso-
hue relationship between search target, distractors and
background, using the same type of stimuli as in Color
Contrast (9). Here the target is gray (LT = 0.5) and
background is bright (LB = 1) or dark (LB = 0). In order
to parametrize the contrast for this stimuli, we used the
absolute lightness difference between search target and
distractors. In Figure 10 theta value is 0◦ for all cases, at
0 saturation, the lighness axis is parametrized.
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∆LD,T = |LD−LT | =

{
∆LB,T (1−Ψ(1...N)) if LT > LB

∆LB,T (Ψ(1...N)) otherwise

(12)

LD =

{
LT −∆LD,T if LT > LB

LB −∆LD,T otherwise
(13)

Lightness differences Equation 12 are calculated by
∆LD,T , corresponding to the absolute difference between
target and background lightness (|∆LB,T |) and adjusted
by our psychometric function Ψ(1...N) with distinct dis-
tractor lightness values of LD, depending on the absolute
background lightness with respect the target.

(a) (b)

Figure 10. Examples of distinct background condi-
tions, (a) lighter background and distractors at LD=0.66.
(b) Dark background with distractors at LD=0.17. For
both conditions, the lightness of the search target is
grey (LT=0.5). Absolute contrast for these cases is
∆LD,T=0.33.

Size contrast (11) Dissimilarities in size of objects
tend to drive increase or decrease search speed when
detecting and discriminating salient regions [Sagi and
Julesz, 1984] [Goolkasian, 1997] [Tavassoli et al., 2009]
[Proulx, 2010]. Here is presented size similarity between
symmetric objects (circles, without loss of generality).
Each stimuli was generated with a set of 34 objects ran-
domly around the scene (Figure 11(a)). The search
target has a distinct size with respect to the distrac-
tors, with both cases of smaller and bigger sizes with
Ψ(1...N, 1.25, 5)=[1.25, 1.67, 2.08, 2.5, 3.34, 4.17, 5] deg, be-
ing the size as the parameter that defines the similarity
contrast for this case, corresponding to a scaling factor of
0.5 to 2 with respect to the baseline (2.5 deg).

Orientation contrast (12) For this setting, varying
angle of objects is found to increase search efficiency
when angle contrast is increased [Duncan and Humphreys,
1989] [Nothdurft, 1993b] [Nothdurft, 1993a] [Kong et al.,
2017]. A set of 34 bars were randomly displaced around
the scene and oriented at 0◦, in which the search target is
an equally-shaped bar oriented at a distinct angle (Figure
11(b)). Angle contrast between the search target and the

set of distractors was ∆Φ(1, 0)=[0, 10, 20, 30, 42, 56, 90]o

Equation 4.

(a) (b)

Figure 11. Examples for salient targets with dissimilar
size (a) and orientation (b). For (a), the search target
has a diameter of 5 deg (a factor of 2 with respect to the
rest of distractors). For (b), the orientation of the tar-
get is 90◦ with distractors at 0◦, forming an orientation
contrast of ∆Φ=90◦.

Distractor Heterogeneity (13) Previous design was
to evaluate orientation similarity, given a unique orien-
tation for non-target distractors. Here is presented the
phenomenon of distractor heterogeneity. When several
sets of distractors are dissimilar with respect to the search
target, mutual information between the target and dis-
tractors is said to be heterogeneous. In the heterogeneous
case, search efficiency is lower, in other terms, target
search is harder [Treisman and Gormican, 1988] [Duncan
and Humphreys, 1989] [Nothdurft, 1993a] [Bauer et al.,
1996] [Rosenholtz, 2001] [Gao, 2008] [Wolfe, 2010]. Distrac-
tor orientation heterogeneity, however, can be represented
through distinct configurations, either if the set of distrac-
tors are tilted to the same direction or towards distinct
directions. In this experiment, there is an array of bars
oriented at 75◦ (with a slope of 15◦ with respect to the
vertical quadrant). From two different sets of distractors,
are defined three conditions according to the distinct ori-
entation configurations: homogeneous, tilted-right and
flanking (Figure 12). For the case of homogeneous distrac-
tors, both set of distractors have a unique angle contrast
with respect to the target bar. For the case of tilted-right,
both set of distractors have an angle tilt of 15 and 30◦,
φ(1, 90, 15, 30). For the case of flanking, both sets of dis-
tractors have an angle tilt of 15◦ and −30◦ respectively,
having both positive and negative tilt with respect the
search target, φ(1, 90, 15,−30).

φ(v, a, c1, c2) = {Φ(v, a, c1),Φ(v, a, c2)}, (14)

∆φ(v, a, c1, c2) = {∆Φ(v, a, c1),∆Φ(v, a, c2)}. (15)

For this type of stimuli, is defined the angle contrast
from the search target to two set of distractors, repre-
sented as contrasts from the first set ”c1” and the second
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set ”c2” in Equation 15, being the maximum angle be-
tween distractors and search target (considering that bars
have angle values on two quadrants for each case) as 90◦.
Our target angle will have values taken from Φ(1, 90) be-
ing parameterized with contrast values ranging from 0 to
90◦, in order to reveal higher angle contrast values, as
heterogeneous distractors are harder to be identified.

(a) (b) (c)

Figure 12. Examples of distinct distractor angle config-
urations, corresponding to (a) Homogeneous, (b) Tilted-
right and (c) Flanking.

Distractor Linearity (14) Orientation collinearity fa-
cilitates visual guidance when orientation of target differs
from its neighbors, making search efficient and in paral-
lel [Nothdurft, 1993b] [Nothdurft, 1993a] [Wolfe, 2010].
Visual guidance is induced by orientation linearity given
an array of bars as defined from the previous stimulus
type. Each bar has been oriented with a specific angle,
creating a nonlinear pattern for the whole search array
(Figure 13). A linear case has also been presented to
compare the conspicuity baseline from the other cases.

(a) (b)

(c) (d)

Figure 13. Examples of elicited guidance according to
distinct linearity of the distractors. In (a), distractors
are set using the same angle contrast of 90◦ with respect
to the target. Conversely, in (b),(c) and (d), nonlinear
patterns are set at an accumulative slope of 10, 20 and
90◦ respectively.

ϕ(u, row, col) = u · row + u · col, (16)

∆ϕ(v, u, row, col) = Φ(v, 0) + ϕ(u, row, col). (17)

Angle contrast is calculated as the orientation differ-
ence from the corresponding value of nonlinearity pattern
”u” at a certain position on the array ”row, col” with
a maximum angle contrast with respect to search target
(Equations 16 and 17).

Distractor Categorization (15) Visual search for an
oriented bar can be inefficient with distractors at 2 dif-
ferent orientations [Gao, 2008] [Wolfe, 2010]. However,
it was found that not all orientations present on an im-
age are equally coded in pre-attentive vision, different
configurations of the orientations of the target and the
distractions lead to different discriminability [Treisman,
1991]. Some of these orientation configurations were cat-
egorized as ”steep”, in which search target is identified
more efficiently. Other categories of heterogeneous distrac-
tors presented harder target search and were dependent
on set size. The three categories were modeled, corre-
sponding to ”steep”, ”steepest”, ”steep-right” as defined
by Wolfe et. al. [Wolfe, 1992]. By considering the same
orientation contrast between the two sets of angles, tar-
get orientation was parametrized in order to reveal at
which orientation contrast is the target to both types of
distractors that form these categories. We have modeled
these three orientation configurations for each distractor
pair, corresponding here to −50,50◦ for steep, −30,70◦

for steepest, 20,80◦ for steep-right (Figure 14). There
was the same amount of distractors for each condition as
shown for search on Distractor Heterogeneity (13) and
Distractor Linearity (14) in order to uniquely analyze
orientation contrast and preserving similar stimulus type
conditions. As shown in section Distractor Heterogene-
ity (13), the orientation values for each set are computed
with Equation 14 and the contrast with respect to the
target as Equation 15. The maximum orientation con-
trast was calculated for all conditions at 40◦ (v = 90/40)
considering the interference of bar orientation contrast
in all quadrants (between the target and both distractor
orientations). Target angle had psychometric values of
φ(v, 90,−50, 50) for steep, φ(v, 90,−30, 70) for steepest
and φ(v, 90, 20, 80) for steep-right.

(a) (b) (c)

Figure 14. Examples of distinct distractor angle config-
urations, corresponding to (a) Steep, (b) Steepest and
(c) Steep-right.
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2.5 Data Analysis

In order to get the spatial relevance of participant’s eye
movements we generated binary maps from fixation co-
ordinates. Fixation density maps are computed with a
symmetric Gaussian low-pass filtering (with a window size
of [6σ x 6σ]) of the respective binary maps. A value of
σ = 1 deg was used, as recommended by LeMeur and
Baccino [LeMeur and Baccino, 2012], corresponding in
our case to 40 pixels. The saliency index (SI) is a measure
that relates the energy inside a specific region (that can
be manually selected, such as a pop-out region) and the
one outside that region.

SI(St, Sb) =
St − Sb
Sb

. (18)

We adapted the metric from Spratling’s work
[Spratling, 2012] in order to present positive values as
a better representation of the SI (Equation 18). The dis-
tribution of fixations inside (St) and outside (Sb) the area
of interest (AOI) will be extracted by cropping the fixation
density map using the mask presented on Figure 15.

(a) (b) (c)

Figure 15. First row shows a grid with 8× 10 circles, in
which one of them becomes salient because of having a
superimposed bar. On the second row, the superimposed
bar is located instead on the rest of circles (distractors).
(a) Representation of the mask, corresponding to the AOI
of the search target in green (St) and the background in
red (Sb). (b) Example of a scanpath of a single partici-
pant, representing each saccade with a green dashed line
and each fixation number with a diameter corresponding
to its fixation duration. (c) Superposed density map from
the accumulation of fixations for all participants for such
stimuli. The colorbar represents the probability of the
density distribution.

For evaluating the SI for a specific sample, a binary
visual mask of the salient region (or AOI) needs to be
manually created. Given samples at distinct fixation or
saccade number, it is possible to compute gaze-wise SI in
order to evaluate the temporal evolution of that measure.

Such metric can provide a gold standard of spatial per-
formance in terms of how a region pops out with respect
to the rest using fixation density maps from recorded eye
movements. In other words, measuring the SI using the
fixation density maps is the same as measuring the dis-
tribution of fixations that have been recorded inside a
particular region of an image. Same parameters of the SI
metric are preserved from previous studies [Soltani and
Koch, 2010]. Although other parameters (such as mask
area) could be included to better represent the data, this
could be a metric to be exploited in future studies.

In order to get the performance of participants on
salient region localization, we recorded the reaction time
(RT) on landing inside the AOI. For the free-viewing tasks,
we recorded this RT from the initial fixation until the gaze
landed inside the AOI. Once a fixation was outside the
AOI, we recorded the time until the gaze returned to
the AOI, being in this case produced by inhibition of re-
turn (IOR) mechanisms. For the visual search tasks, we
recorded in a similar way the first fixation inside the AOI
as well as visual discrimination. For this latter case, dwell
fixations were pinpointed as being inside the AOI during
1000 ms in order to report identification of search targets.
For the cases in which participants could not find the
stimulus target, the RT corresponded to key pressing. We
used fixation data for reporting target localization on both
free-viewing and search tasks and the dwelling method for
reporting target identification for visual search tasks. In
that way, it is possible to discard non-representative fixa-
tions and saccades that could be present by other methods
such as key trigger, that could imply spatial and temporal
deviations with respect to both visual localization and
identification. Given an image where salient regions are
known, if the SI and the RT reproduce similar results at
distinct tasks, feature contrasts and stimulus types, the
SI could provide a way to spatially measure how salient is
an object, considering specific regions as pop-out instead
of using fixations across the whole scene as ground truth.
The usage of eye tracking experiments and regions of in-
terest for calculating localization RT instead of keyboard
triggers reveals a more accurate way for evaluating visual
attention, as no temporal delays are presented from the
time since the participants see the search target to report
that they have seen it. That method also allows to prevent
them to attend to other regions outside the experimental
source over time, such as looking towards the keyboard,
which can impair their perceptual adaptability (in terms
of light sensitivity and foveation).
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3 Results

A total of 90, 100 fixations were recorded over approxi-
mately 30 hours of viewing time. The mean number of
fixations per stimulus was M = 12± 1, corresponding to
M = 15± 1 for free-viewing (given from 5000 ms of view-
ing time) and M = 11± 1 for visual search task stimulus
(given from the total viewing time until the stimulus trig-
ger, corresponding to target identification). Mean fixation
duration was M = 240± 1 ms and it was not presenting
significant differences from the two types of tasks. See that
both distributions of Fixation Duration (FD) and Saccade
Amplitude (SA) (Figure 16) were skewed to lower values
with their upper and lower quartiles at approximately 100
and 300 ms for FD and 2 and 5 deg of SA. We have also
plotted the CDF for both variables and results show that
most eye movements (80%) have a FD of less than 300 ms
and SA tend to be shorter than 10 deg.

(a)
(b)

(c) (d)

Figure 16. (a) Distribution of Fixation Duration (FD),
measured as the absolute fixation time for all samples
upon the probability of fixations. (b) Distribution of
Saccade Amplitude (SA), measured as the absolute eu-
clidean distance between saccade initiation and saccade
landing all samples upon the probability of saccades. (c,d)
Cumulative Distribution Functions for FD and SA.

The overall number of fixations was larger for images
containing less salient regions, categorized as hard, requir-
ing more fixations for participants in stimulus with less fea-
ture contrast. Localization probabilities were calculated,
based on the scanpaths in which participants’ gaze landed
inside the corresponding AOI. Our results report easiest
targets more probable to be localized for both free-viewing

(p=6.2 × 10−4, Z=3.4, Peasy=0.38, Phard=0.30) and vi-
sual search tasks (p=6.9 × 10−88, Z=19.9, Peasy=0.72,
Phard=0.47). After calculating the reaction times for tar-
get localization (landing inside the AOI) and identification
(reporting presence of target), we discarded samples where
RT>2σRT . In that manner we could counteract the im-
pact from oculomotor biases in relation to the localization
time with respect objects with approximately that size.
As the search targets were smaller for most visual search
stimuli, hence less dependent to their respective distance
from the stimulus center, we did not discard the respective
samples.

3.1 Performance upon Feature Type
(1st Hypothesis)

RTs for AOI localization are evaluated for each stimu-
lus type and task respectively. Since overall data do
not follow a normal distribution (through lilliefors test),
Kruskal-Wallis tests were performed in order to evaluate
task differences for each contrast difficulty (easy vs hard)
as well as differences in RT between distinct type of stim-
uli. As feature contrasts follow distinct contrast values,
we want to test if some features have similarities in RT
and their interactions. For each stimulus type, the RT
is different given the feature type for both free-viewing
(Figure 17) and visual search task stimuli (Figure 18).

For the former, there were significant differences
(p=1.00 × 10−10, χ̃2=52.7, Mdn(1)=523, Mdn(2)=615,
Mdn(3)=604, Mdn(4)=736, Mdn(5)=684 ms) between dis-
tinct stimulus types RTs, being Corner Angle (1) the
fastest stimulus to localize the salient region and Contour
Integration (4) the slowest.

For the latter, there were significant differences
(p=1.11 × 1074, χ̃2=372, Mdn(6)=782, Mdn(7)=742,
Mdn(8)=942, Mdn(9)=892, Mdn(10)=593, Mdn(11)=787,
Mdn(12)=622, Mdn(13)=606, Mdn(14)=676, Mdn(15)=
952 ms) on RTs for searching salient regions, showing
highest performance for Orientation Contrast (12) and
Distractor Categorization (15) the lowest.

By computing the saliency index from the density maps
across all fixations and the stimulus masks, it is possible to
spatially evaluate saliency (in terms of number of fixations
inside the window, represented as a heat map isotropi-
cally distributed using a Gaussian filter) given from each
stimulus types.
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(a)

(b)

Figure 17. Plots for salient region localization time (a)
and saliency index (b) corresponding to stimulus types
of Corner Angle (1), Segmentation by Angle (2), Seg-
mentation by Distance (3), Contour Integration (4) and
Perceptual Grouping (5)

Similarly, there were significant differences on SI de-
pending on stimulus types for free-viewing (p=3.5 ×
10−7, χ̃2=36, Mdn(1)=1.69× 10−2, Mdn(2)=6.7× 10−4,
Mdn(3)=1.1× 10−3, Mdn(4)=2.2× 10−3, Mdn(5)=1.2×
10−3 and visual search (p=4.9 × 10−6, χ̃2=41,
Mdn(6)=32 × 10−3, Mdn(7)=1.4 × 10−2, Mdn(8)=8.0 ×
10−3, Mdn(9)=1.8 × 10−2, Mdn(10)=4.0 × 10−2,
Mdn(11)=1.6×10−2, Mdn(12)=4.0×10−2, Mdn(13)=3.9×
10−2, Mdn(14)=3.1× 10−2, Mdn(15)=13× 10−3). Stimu-
lus with higher SI for free-viewing task was Corner Angle
(1) and the lower was Visual Segmentation (2-3). For the
case of visual search task stimuli, most salient targets were
on stimulus presented on Size (12) and Orientation (13)
contrast and the least ones on Noise/Roughness (8) and
Distractor categorization (12) search.

Given the aforementioned results shown for Figures 17
and 18, RTs were lower (faster) for stimuli with higher SI.
The reverse case applies for lower RTs. Target identifica-
tion (when participats voluntarily report to identify the
search target, as explained in Section 2.5) was shown to be
slower than target localization (p<1.3× 10−111,Z=−22.4,
Mdnlocalization=726, Mdnidentification=1026 ms), sup-

porting the literature [Sagi and Julesz, 1984] [Noth-
durft, 2006a] with an absolute mean time difference of
M=415± 203 ms.

(a)

(b)

Figure 18. Plots for salient region localization time (a)
and saliency index (b) corresponding to stimulus types of
Feature and Conjunctive Search (6), Search Asymmetries
(7), Noise/Roughness (8), Color Contrast (9), Brightness
Contrast (10), Size Contrast (11), Orientation Contrast
(12), Distractor Heterogeneity (13), Distractor Linearity
(14) and Distractor Categorization (15).

Discussion

We can observe that saliency is induced through varying
distinct features of the images. Fixations from partici-
pants are shown to localize salient regions significantly
with distinct performance depending on feature type and
the amount of fixations are distributed or spread distinc-
tively across these regions. These aforementioned obser-
vations might be influenced by distinct processing (and
correlates) of the visual features in the HVS.

3.2 Performance upon Feature Contrast
(2nd Hypothesis)

Measures of RTs and SI for salient region localization
were computed for each stimulus target-distractor contrast.
Overall RT data was not normally distributed, but individ-
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ual data per stimulus type was normally distributed. Mean
RT and error is represented according to the stimulus con-
trast as well as its mean SI. Spearman’s rank correlation
tests show that there was a significant negative correlation
between RT and SI (ρRT,SI=−.44, pRT,SI=2.2× 10−195),
suggesting that SI is a plausible measure for representing
saliency on a particular region (higher SI and lower RT
implies faster localization speed). In that respect both
RT and SI were related to stimulus feature contrast (CT)
measurements (shown on Section 2.4 and Figures 19,20
and 21). RT was negatively correlated with respect to
CT (ρCT,RT=−.14, pCT,RT=7.1× 10−21). Conversely, SI
was correlated with CT ρCT,SI=.05, pCT,SI=3.4× 10−3).
These results show that both measurements were satisfy-
ing the Weber Law (RT decreasing with higher CT and
SI increasing with respect CT). Individual results for cor-
relations between each contrast measurement satisfy for
most cases the aforementioned relationships between CT
and RT as well as CT and SI, presented in Table 4.

Table 4. Table of correlations between contrast values
(3rd column) with Reaction Time (4th column), or with
Saliency Index (5th column)

Feature type Contrast (CT) ρRT ρSI
(1) Corner Angle Slope(o) .23* .53*
(2) Segment. Angle Angle,∆Φ(o) -.33* .11
(3) Segment. Spacing Spacing(deg) .65* -.37*
(4) Contour Integration Length(deg) -.25* -.35*
(5) Perc. Grouping Distance(deg) .29* -.06
(6) Feat. & Conj. Search Set Size(#) .15* -.12*
(7) Search Asymmetries Set Size(#) -.33* -.39*
(8) Noise/Roughness Freq., 1/fβ -.56* .53*
(9) Color Contrast Sat.,∆SD,T -.57* .48*
(10) Brightness Contrast Light.,∆LD,T -.41* .25*
(11) Size Contrast Size(deg) -.55* -.29*
(12) Orientation Contrast Angle,∆Φ(o) -.18* .05
(13) Distr. Heterogeneity Angle,∆Φ1c(o) -.04 .17*
(14) Distr. Linearity Angle,∆Φ(o) -.07 .01
(15) Distr. Categorization Angle,∆Φ1c(o) -.24* .23*

*: p<.05

We have plotted the relationships between RT and CT
as well as for SI and CT in order to see how CT varies
localization performance for each stimulus feature type
individually (Figures 19,20 and 21). In these figures we
can observe (in relation to Table 4) which feature targets
are perceived in parallel or require a serial ’binding’ step.

On (1-5) the Weber law applies for stimulus such as
Corner Angle, showing slower localization on smoother
corners than sharper ones. For Visual Segmentation stim-
uli, segment localization was faster to be localized when
segment angle had a diagonal segment for both single
and superimposed segments (due to its own corner angle
with respect to other segment bars), being single ones
with a trend to be more salient (p=1.2× 10−2, χ̃2=6.3).
Segments with 1.5 deg of segment distance and 2.5 deg

of bar length showed faster localization rate compared
to wider segments. The Weber law applied as well for
contour detection, being larger contours faster to be local-
ized. For Perceptual Grouping, similar shape distractors
showed slower localization rates as grouping distance is
increased (lower proximity), but it was not so evident for
dissimilar distractors, being localized faster and with over-
all higher SI. The Weber law did not apply for this case,
suggesting that at a certain proximity distance (about
approximately 5.5 deg) participants fixated into several re-
gions, making them similarly salient. SI results on Corner
Angle and Contour Integration had positive correlations
with respect RT (contradicting the general case). That
would be caused by the size of the masks (from stimulus
salient objects), which would be higher for higher stimu-
lus contrasts, with decreasing absolute SI (bigger masks
would require more fixations when considering the same
spatial conditions). In that aspect, SI must be evaluated
considering that the size of the mask is constant, which is
not the case for Corner Angle (1) and Contour Integration
(4). These center biases might be one of the reasons for
the Weber law appliance (presenting less agreement on RT
and SI continuity upon feature contrast) as endogenous
visual guidance can generate higher inter-participant dif-
ferences. A more continuous slope for RT and SI observed
for stimulus feature contrasts could be acquired by using
an onset cue and a constant distance between the initial
fixation and the stimulus target, but that method could
generate oculomotor biases with respect to the possible
positions distinct from the center (that could also vary
the temporality of the fixations with respect to the center
distance). An alternative solution that would partly solve
the problem (as distance from the initial fixation and
the stimulus target would still not be totally constant)
would be to acquire a larger amount of observations at
distinct randomized regions for each stimulus contrast and
stimulus type [Wolfe et al., 2010] [Wolfe et al., 2011].

Feature search show a faster localization of the target
than conjunctive search (Figure 20), with an almost con-
stant RT with respect to set size (features processed in
parallel). Conjunction search reveal slower localization of
stimulus targets (p=2.5× 10−24, χ̃2=104) as we increase
distractor number (consequently, features being shown
to be processed in a serial manner), likewise with lower
SI. Similarly, reporting stimulus absence presented sim-
ilar response time distributions, presenting conjunctive
distractors to be more uncertain for reporting absence
(p=1.9×10−36, χ̃2=159) than feature search ones. Search-
ing a target circle among circle distractors with a superim-
posed bar show lower performance at increasing scale and
set size (p=6.2 × 10−33, χ̃2=143), reversely, searching a
target circle with a superimposed bar among circles shows
more constant performance, revealing that search asymme-
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(1) (2) (3) (4) (5)

Figure 19. Plots of Reaction Times (top row) and Saliency Index (bottom row). Spearman’s rank correlation tests
were performed between RT and SI from each stimulus type and participant individually, corresponding on each
case to Corner Angle (1): ρ(1)=8.3× 10−2, p(1)=.43, Visual Segmentation (2,3): ρ(2)=−.22, p(2)=5.6× 10−3;
ρ(3)=−5.7 × 10−4, p(3)=.99, Contour Integration (4): ρ(4)=−5.1 × 10−2, p(4)=.61 and Perceptual Grouping
(5): ρ(5)=−.13, p(5)=.12. For this cases, we have discarded samples in which participants had a fixation closer than 5
degrees of eccentricity from the search target, corresponding to the higher visual acuity of the fovea [Strasburger
et al., 2011] [Wandell, 1995], as the RT calculation could be impaired by center biases.

(6) (7) (8) (9) (10)

Figure 20. Plots of Reaction Times (top row) and Saliency Index (bottom row). Spearman’s rank correlation
tests were performed between RT and SI from each stimulus type and participant individually, corresponding on
each case to Feature and Conjunction search (6): ρ(6)=−.59, p(6)=4.6 × 10−36, Search Asymmetries (7):
ρ(7)=−.45, p(7)=3.3×10−9, Noise/Roughness (8): ρ(8)=−.68, p(8)=5.5×10−33, Color Contrast (9): ρ(9)=−.69,
p(9)=1.5× 10−72 and Brightness Contrast (10): ρ(10)=−.51, p(10)=3.4× 10−23.

18



(11) (12) (13) (14) (15)

Figure 21. Plots of Reaction Times (top row) and Saliency Index (bottom row). Spearman’s rank correlation tests
were performed between RT and SI from each stimulus type and participant individually, corresponding on each case
to Size Contrast (11): ρ(11)=−.14, p(11)=9.7× 10−2, Orientation Contrast (12): ρ(12)=−.41, p(12)=2.7× 10−8,
Distractor Heterogeneity (13): ρ(13)=−.57, p(13)=3.5 × 10−41 and Distractor Linearity (14): ρ(14)=−.57,
p(14)=2.1× 10−53 and Distractor Categorization (15): ρ(15)=−.66, p(15)=2.9× 10−59.

tries for this case apply. SI also reveals search asymmetries
with respect these two types of stimuli, however, the SI is
lower for the former case.

The Weber law is present for the case of background
roughness, showing a decrease in search performance and
SI at low beta values (rougher surfaces). Both conditions
of height deviation (σRMS=0.9, 1.1) present similar per-
formance with both metrics, with a trend of better search
efficiency for higher RMS values. When searching a target
with higher saturation contrast with respect distractors,
both search performance and SI is higher than with lower
saturation contrasts. Background conditions present a
trend to drive search asymmetries, showing faster local-
ization RTs and SI for unsaturated backgrounds. In that
aspect, achromatic backgrounds presented faster local-
ization for both red (p=3.8× 10−9) and blue distractors
(p=2.1 × 10−4). SI is shown to be higher for red hue
in contrast to blue hue for search target and distractors.
Lightness contrast also conforms with the Weber law,
similarly to saturation contrast but with higher overall
performance. Lighter backgrounds with darker search
targets present a trend to have higher SI with respect to
darker backgrounds with lighter salient objects.

Results on size similarity reveal increased search effi-
ciency with respect to size contrast, with a tendency of
perceiving bigger objects as more salient than smaller ones
for both localization time and saliency index as in Figure
21. Similarity on orientation also shows increased search
efficiency with respect angle contrast, with diagonal angles
localized faster than vertical or horizontal ones. Orienta-
tion contrast has been found to have high search efficiency,

specially with diagonal angles and homogeneous angle
organization for distractors. In contrast, heterogeneous
set of distractor angles present a lower search efficiency
with respect to the homogeneous ones. Homogeneous
distractors were significantly localized faster for hetero-
geneity at distinct angle quadrant configurations (flank-
ing) p=1.0× 10−9 but not for heterogeneous distractors
with angle configurations at the same quadrant (tilted-
right) p=.63. Another distinct type of orientation-related
guidance is distractor linearity, presenting differences de-
pending on each slope condition (p=1.3× 10−35, χ̃2=165).
Non-linear orientation patterns at a slope increment of
20◦ present lower search efficiency than the ones at 10◦

and 90◦. The latter case presents a slightly lower search
efficiency at vertical or horizontal orientations due to its
similar orientation interactions between the target and
one of the distractor sets. Results suggest that both the
amount of distractor sets and each of their orientation con-
trasts with respect to search target might be the source of
overall distinctiveness for non-linear orientation patterns.
Results related with orientation pattern categorization
report overall higher SI and a trend for faster localiza-
tion rate for steep orientation organization than steepest
(p=8.4× 10−2) and significant with respect to steep-right
(p=1.2× 10−5), confirming that search asymmetries apply
for this case considering that three conditions possess the
same orientation contrast between the two distractor sets.
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Discussion

In this study we show that feature contrast is correlated to
saliency using distinct measures and feature types, being
saliency higher at higher feature contrasts. By using visual
search tasks and synthetic images, there is a better control
of exogenous cues by reducing endogenously-dependent
guidance. It is about to consider that the SI is a good
measure for evaluating saliency for specific areas of inter-
est.

3.3 Attention changes nonlinearly over
time (3rd Hypothesis)

Values of FD and SA were grouped for each gaze as func-
tions of viewing time. In Figure 22(a,b), during the first
1 to 2 seconds, fixations have a larger duration for visual
search tasks. For the visual search task, fixations have a
duration with a peak at 274 ms during the beginning of
the experiment and progressively drop during the end of
the stimulus view to 217 after 5000 ms of viewing time. In
free-viewing tasks, FD remains stable after the first and
second fixation at approximately 202 ms. For the SA on
both tasks there is a peak for the first saccade between 6.5
and 7 deg. During the first and second gaze, SA drops to
a value between 5.5 and 6 deg and increase during 1 sec-
ond to amplitudes between approximately 6 and 6.5 deg.
During the last gazes, after 2 seconds of viewing time,
SA progressively drops during the rest of viewing time.
Such behavior occurs similarly for both visual search and
free-viewing cases, these patterns might also be related to
endogenous factors commented previously. These distinct
eye movement patterns might be related to how partici-
pants approach targets depending on task priors and show
an overview of how relevant is to account for temporal
properties when evaluating eye movements.

SI was computed using the density maps across fixation
number Figure 22(c), it decreases with respect to fixation
number, being the first fixations (from the 1st to the 5th)
the ones that have higher SI (accounting for fixations inside
the salient region). Inhibition of return (IOR) mechanisms
might be responsible for the aforementioned effects. IOR
was present and we believe that it may have influenced
both types of tasks. To know that, mean return saccade
time was computed, corresponding to the time spent from
the first fixation inside the AOI to the second fixation that
returned inside the AOI, which was M=16.6± 0.9× 102

ms, corresponding to M=14.1± 0.5 × 102 ms for Free-
Viewing and M=18.6± 1.5 × 102ms for Visual Search
tasks respectively.

(a)

(b)

(c)

Figure 22. (a) Temporal evolution (from 0 to 5000 ms)
of fixation duration. (b) Temporal evolution (from 0 to
5000 ms) of saccade amplitude. For both plots, samples
corresponding to free-viewing task fixations and saccades
are represented in red and blue for the case of Visual
Search. (c) Mean saliency index upon fixation number.

Discussion

The temporal evolution of fixation and saccade behavior
reveal distinct patterns of eye movements upon viewing
time , confirming the evidence that visual attention is
an active process and its modeling involving temporal-
ity requires further investigation. Scanpath prediction
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could allow the reproduction of the aforementioned effects,
regarding in that aspect both bottom-up and top-down
processing of visual features that distinctively guide visual
attention [Boccignone and Ferraro, 2004] [Kubota et al.,
2012] [Chang et al., 2014] [LeMeur and Liu, 2015] [Aboudib
et al., 2015] [Adeli et al., 2016] [Wang et al., 2016] [Wloka
et al., 2017] [White et al., 2017]. In that aspect, as saliency
decreases over time, saliency evaluation measures should
be done in that line.

3.4 Task influences perceived attention
(4th Hypothesis)

Distinct eye movement behavior in terms of FD and SA
was presented depending on each task type (Section 3.3).
Task priors also influenced the localization performance
in relation to feature contrast.

First, Wilcoxon signed-rank tests were performed to
evaluate the amount of fixations between easy and hard
targets and was found to be lower for easy than for hard
targets in the visual search task (p=2.1×10−147, Z=−26,
Mdneasy=4, Mdnhard=7), but there was no difference
for the case of the free-viewing task (p=.069, Z=−0.1,
Mdneasy=15, Mdnhard=16). There were differences in
FD between the easy and hard targets for visual search
(p=3.6 × 10−36, Z=13, Mdneasy=199, Mdnhard=179
ms), but it was not occurring for free-viewing tasks
(p=.57, Z=.57, Mdneasy=199, Mdnhard=199 ms). Same
phenomena was presented for SA, in which there
was a significant difference depending on the stimu-
lus contrast difficulty for visual search (p=1.7 × 10−56,
Z=−16, Mdneasy=3.9, Mdnhard=4.7 deg) but not for
the case of free-viewing (p=.069, Z=−1.8, Mdneasy=3.9,
Mdnhard=4.1 deg). These results evidence less depen-
dence from low-level feature contrasts for free-viewing
tasks in contrast to visual search tasks, acknowledging
that participants are not always exogenously guided to
gaze towards salient regions for free-viewing tasks, namely,
that endogenous factors are prevailing more in this kind
of task, making saliency less accurate spatially and tem-
porally.

Second, we observed the correlations of RT, SI and
feature contrast (FC), described in Section 3.2. Here
we define FC as ψ values for considering a generalized
feature contrast, as CT values vary between blocks, but
FC values do not. For visual search stimuli, RT was
negatively correlated with SI (ρRT,SI=−.59, pRT,SI=.00),
FC was negatively correlated with RT (ρFC,FC=−.08,
pFC,RT=6.4 × 10−7) but positively correlated with SI
(ρFC,SI=.05, pFC,SI=2.4× 10−3). For free-viewing stim-
uli, there was a significant negative correlation between RT
and SI (ρRT,SI=−.16, pRT,SI=1.2× 10−4), a negative cor-
relation between FC and RT (ρFC,RT=.26, pFC,RT=6.5×

10−10) but the relationship with respect feature contrast
and SI was non-significant (ρFC,SI=−.04, pFC,SI=.32).
Distinct behavior is presented on the regression lines shown
in Figure 23 the relationships from RT and SI with re-
spect to CT (here represented as a unique contrast value,
although calculated for each contrast measurement sepa-
rately as in Table 4) for both tasks.

(a)

(b)

(c)

Figure 23. Scatter plots of Reaction Time (a), Saliency
Index (b) and Distance from center (c) upon feature con-
trast (Ψ). We represented the mean of each feature type
separately and we have plotted the regression line for both
tasks.

Discussion

Salient region localization performance varies with re-
spect to feature contrast depending on the task. Fixation
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duration and saccade amplitude are affected more by stim-
ulus contrast on Visual Search than Free-Viewing tasks.
Moreover, the center bias seems to be more present for
Free-Viewing tasks. Further analysis of interest would be
the evaluation of absolute task differences in localization
performance. In that respect, we could present the same
stimuli with several observations for each feature contrast
and distinct cueing, so that to see the absolute influences
from endogenous guidance for each distinct feature type
and contrast.

3.5 Center biases are endogenous
(5th Hypothesis)

The center bias was represented by grouping fixations
for all samples and representing the density map shown
in Figure 25. From such baseline, it is possible to esti-
mate the mean euclidean distance from every fixation to
the baseline center (DC). This baseline shows increasing
spreadity and area with respect to fixation number and
consequently with respect time. In Figure 24 there is the
DC as a function of viewing time (centroid was computed
as a unique point corresponding to the initial fixation base-
line). From this plot, we can observe that participants
move their eyes away from the center of the stimulus after
the first and second fixation, between 10 and 11 deg. After
2 seconds of viewing time, mean distance from baseline
center is nearly constant for the visual search case but
not for the free-viewing case. For the latter, fixations get
become closer to the baseline center showing increasing
patterns of center bias for this task, similarly to SI (Figure
22), which increases during the first fixations and drops
on late fixations.

Figure 24. Representation of the center bias as the mean
euclidean distance between fixation localization and the
baseline center.

Initial 1st 5th 10th 20th

Figure 25. Representation of the density map for all
fixations grouped together across all stimuli.

DC was negatively correlated with FD (ρ=−.08,
p=3.9× 10−134) and positively correlated with SA (ρ=.08,
p=1.4× 10−148). Here, short fixations and large saccades
might be eye movement patterns highly related to saliency
(as being negatively correlated to the center bias). By com-
puting the mean per stimulus for the case of FC, it is pos-
sible to compare how DC was affected by feature contrast
Figure 23c. For Free-Viewing task, DC was significantly
negatively correlated with FC (ρ=−.13, p=2.6 × 10−3).
For Visual Search task, DC was not significantly corre-
lated with FC (ρ=−.03, p=.07). Acknowledging that
stimulus targets were randomized, feature contrast was
decreasing the center bias (increasing DC) more on Visual
Search tasks than for Free-Viewing tasks, supporting the
literature stated in Section 1.5.

Table 5. Table of correlations between Feature Contrast
(FC) with Distance from baseline center (DC)

Feature type ρψ,DC
(1) Corner Angle -.004
(2) Segment. Angle -.32*
(3) Segment. Spacing -.16
(4) Contour Integration .012
(5) Perc. Grouping -.07
(6) Feat. & Conj. Search -.34*
(7) Search Asymmetries .24*
(8) Noise/Roughness -.29*
(9) Color Contrast -.12*
(10) Brightness Contrast .66*
(11) Size Contrast -.31*
(12) Orientation Contrast -.18*
(13) Distr. Heterogeneity .21*
(14) Distr. Linearity -.28*
(15) Distr. Categorization -.03

*: p<.05

We have added in Table 5 the correlations between
DC and FC for each feature individually. Most cases of
singleton search (i.e. 6-15) show a significant negative cor-
relation between DC and FC, meaning, when the feature
contrast is higher, the center bias is lower.

Discussion

Short saccades and large fixation durations are shown to
be correlated with eye movement behavior related to the
center bias. Temporality of fixations show a non-linear
evolution of the center bias, showing more dispersion with
respect to viewing time. Moreover, distance from center
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In that aspect, saliency would not only need to be evalu-
ated by adjusting metric performances using metrics that
account for the aforementioned center biases [Zhang et al.,
2008] [Borji et al., 2013c] [Bethge et al., 2015] [Wloka and
Tsotsos, 2016] [Nuthmann et al., 2017], but also upon the
importance of temporality on fixation and saccade char-
acteristics, by computing each metric upon gaze number
on each stimulus fixational data. Thus, saliency met-
rics should account for feature contrast and minimize the
contextual effects in order to accurately reproduce eye
movement behavior.

4 General Discussion

Given the presented results, we emphasize that saliency
is influenced by a variety of factors when observing eye
movement behavior. In this study is presented a dataset
considering all the aforementioned factors, by evaluating
eye movements for distinct feature types, contrasts, tem-
porality, task and representing the center biases. First,
scene context (here defined as different feature types)
is known to affect attention with specific performance,
significantly determining efficiency of localizing and/or
identifying salient regions. Second, saliency measures are
shown to be correlated to feature contrast and distinctively
depending on feature type. Third, fixation and saccade
characteristics are presented to evolve non-linearly over
time, making saliency decrease with respect saccade num-
ber and/or viewing time. Fourth, visual search tasks show
higher performance in comparison to free-viewing on our
saliency measurements and they have a higher correlation
with respect saliency and feature contrast. Fifth, the cen-
tral bias is shown to be correlated to short saccades and
long fixation durations.

Eye movements are a behavioral output that imply
processing of both endogenous and exogenous factors,
namely, that have both top-down tuning and bottom-
up interactions at different levels of the HVS. Thus, eye
movement prediction might require recurrent processing
of information from the ventral and dorsal pathways of
the HVS, generating a unique representation for eye move-
ment control (visual priority) [Lamme and Roelfsema,
2000] [Corbetta and Shulman, 2002] [Fecteau and Munoz,
2006]. If the unique factor to be evaluated is early saliency,
stimulus in which features are processed fast and in paral-
lel would be more relevant when evaluating eye movement
prediction (showing less inter-participant differences as a
consequence of higher SI), namely, the ones with salient
regions that are reflectively selected and separated from
the background (with higher contrasts with respect the
rest of the scene).

Further considerations

Current literature acknowledges that temporal patterns
of saccades have been shown to be fovea-dependent and
lately classified as focal and ambient, being ambient fix-
ations responsible for early saccades (sensitive to pe-
ripheral signals) and the latter for later saccades (being
these ones foveal) [Unema et al., 2005] [Pannasch et al.,
2008] [Follet et al., 2011] [Eisenberg and Zacks, 2016].
Similarly with saccade latencies, a bimodal latency distri-
bution distinguishes regular from express saccades [Saslow,
1967] [Schiller et al., 1987] [Sommer, 1997] [van Zoest and
Donk, 2006]. We have to acknowledge that the usage
of an eye tracker with higher sampling rate (e.g. above
250 Hz) would improve accuracy in this type of experi-
mentation, especially for a possible microsaccadic analysis.
Distinct eye movement behavior is presented to be de-
pendent as well for saccade length, pupil dilation and eye
vergence [Privitera et al., 2014] [Miura et al., 2001] [Fallah
and Reynolds, 2012] [Wang et al., 2014] [Puig et al., 2013].
All of these factors should be considered in future visual
attention modeling considering their relationships with the
two-stream hypothesis [VanEssen and Gallant, 1994] [Bell
et al., 2013] [Trevarthen, 1968] [Sheth and Young, 2016] in
order to specify the experimental conditions for a better
evaluation of uniquely bottom-up visual attention.

Future work

Future experimentation for low-level feature analysis in
eye movements would be to explore covert attention influ-
ences varying some of the presented feature contrasts at
distinct eccentricities [Carrasco and Yeshurun, 1998] [Car-
rasco et al., 2006] [Carrasco, 2006]. Another observation
of interest would be the evaluation of task differences in
localization performance. In that respect, to present the
same stimuli with several observations for each feature con-
trast and distinct cueing would reveal absolute influences
from endogenous guidance. Our study could be extended
by analyzing the influence of dynamic scenes on saliency
modeling [Leboran et al., 2017] [Riche and Mancas, 2016b]
using synthetic videos with both static or dynamic camera.
In that direction, it would be able to see the interaction
between low-level visual features and temporally-variant
features. Another remark would be to see the impact of
the target template search in comparison to the odd-one
out type of tasks, in this case, but for stimuli with similar
display conditions but distinct feature type.

Physiological evidence could provide an explanation for
the low-level feature processing, including both bottom-up
and top-down computations reproducing the presented
effects not only spatially but temporally. Computations
made by the visual cortex that process these low-level
features (in reference to the mechanisms that respond
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distinctively to color, orientation and spatial sensitivities
as well as their interactions) might be responsible for most
if not all of the effects presented in this study. Further
analysis on mid and high-level features would require
further study in terms of their relation to psychophysi-
cal effects on eye movements as well as their biological
foundations [Kruger et al., 2013].
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6 Supplementary Material

Code for the Stimulus Generation

https://github.com/dberga/sig4vam

Dataset Images, Masks and Fixation Data

http://www.cvc.uab.es/neurobit/?page_id=53
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