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Abstract. An intraluminal coronary stent is a metal sca�old deployed
in a stenotic artery during Percutaneous Coronary Intervention (PCI).
Intravascular Ultrasound (IVUS) is a catheter-based imaging technique
generally used for assessing the correct placement of the stent. All the
approaches proposed so far for the stent analysis only focused on the
struts detection, while this paper proposes a novel approach to detect
the boundaries and the position of the stent along the pullback.
The pipeline of the method requires the identi�cation of the stable frames
of the sequence and the reliable detection of stent struts. Using this data,
a measure of likelihood for a frame to contain a stent is computed. Then,
a robust binary representation of the presence of the stent in the pullback
is obtained applying an iterative and multi-scale approximation of the
signal to symbols using the SAX algorithm. Results obtained comparing
the automatic results versus the manual annotation of two observers on
80 IVUS in-vivo sequences shows that the method approaches the inter-
observer variability scores.

1 Introduction

An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery
during Percutaneous Coronary Intervention (PCI). Ideally, the stent should
be implanted and optimally expanded along the vessel axis, considering vessel
anatomical structures such as bifurcations and stenoses.

Intravascular Ultrasound (IVUS) is a catheter-based imaging technique gen-
erally used for assessing the correct expansion, aposition and precise placement
of the stent. The IVUS images can be visualized in long-axis view, allowing a
pullback-wise analysis and in short axis view allowing a frame-wise analysis (see



Figure 1(a and b)). The physician examines both views, identifying the presence
of struts. The analysis of a single short-axis image sometimes is not su�cient
for accurately assessing if struts are present. In most of ambiguous cases, the
physician has to scroll the pullback back and forward, analyzing adjacent frames
until the stent boundaries are detected.
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Fig. 1. Example of IVUS image in long axis view (a) and in short axis view (b,c). The
IVUS image is represented in polar (b) and in cartesian (c) coordinates, along with the
corresponding classi�cation maps of the short-axis cartesian image (d). The detected
struts are represented using a yellow (c) and black (d) star markers. The automatic
stent shape is represented in dashed blue line.

To date, all the approaches for automatic stent analysis in IVUS assume
that the analyzed frame always contains a stent [1, 2, 3, 4, 5], and no strategies
have been proposed so far for detecting the boundaries and the position of the
stent along the pullback. Instead, this paper extends a previously published stent
detection method [1] by identifying the presence (location and extension) of the
stent along the pullback

The pipeline of the framework requires the identi�cation of the stable frames
of the sequence using an image-based gating technique [6] and the reliable de-
tection of stent struts [1]. Then, this paper introduces a measure of likelihood
for a frame to contain a stent, which we call stent presence. A temporal se-
ries is obtained by computing such likelihood along the whole sequence. The
mono-dimensional signal is modeled as a train of rectangular waves by using
an iterative and multi-scale approximation of the signal to symbols using the
SAX algorithm [7], which allows to obtain a robust binary representation of the
presence of the stent in the pullback.

In order to extensively validate the proposed CAD system, we collected a set
of 80 IVUS in-vivo sequences. The data sets includes about 700 IVUS images
containing metallic stents.



2 Method

2.1 Gating

Let us de�ne an IVUS pullback as a sequence of frames I = {fi} where i is the
frame number of the sequence. In the proposed pipeline, we �rst pre-process the
pullback by applying an image-based gating procedure. Gating is a necessary
step in order to make the analysis robust to two kinds of artifacts generated
by the heart beating: the swinging e�ect (repetitive oscillations of the catheter
along the axis of the vessel) and the roto-pulsation e�ect (irregular displacement
of the catheter along the direction perpendicular to the axis of the vessel). For
this purpose, the method presented by Gatta et al. [6] is applied to the IVUS
pullback, which selects a sequence of gated frames G = {fgj} that are processed
by the system.

2.2 Struts detection

The detection of stent struts was performed by applying the Computer-Aided
Detection (CAD) framework proposed by Ciompi et al. [1] to each gated frame
independently. The method, provides a reliable identi�cation of the stent struts,
by contemporaneously considering the textural appearance of the stent and the
vessel morphology. The CAD system uses the Multi-Scale Multi-Class Stacked
Sequential Learning (M2SSL) classi�cation scheme to provide a comprehensive
interpretation of the local structure of the vessel. In the classi�cation problem,
the class Strut is considered as one of the six considered classes (de�ned as
Blood area, Plaque, Calcium, Guide-wire shadow, Strut and external Tissues).
For semantic classi�cation purposes, tailored features used for classi�cation to
the problem [8] are used.

For each pixel p(x, y) of a gated IVUS image, a classi�cation map M is ob-
tained (see Figure 1(c)). A curve approximating the stent shape Sshape is initially
estimated considering vascular constrains and classi�cation results. For each re-
gion ofM labelled as stent (M{S}), a strut candidate is considered. The selected
struts ps(x, y) were selected among the candidates, considering both local ap-
pearance and distance with respect to the stent shape Sshape . Consequently
false positives candidates were discarded, and the regions containing a selected
strut struts M∗{S}are a subset of M{S}.

2.3 Stent presence assessment

The frames of the pullback corresponding to the vessel positions where the stent
begins and ends can be identi�ed by analyzing the detected struts. We model the
presence of stent as a rectangular function u(t), where the variable t indicates the
spatial position in the pullback. We estimate the binary signal u(t) by processing
a real-valued signal γ(t), which we de�ne stent presence, corresponding to the
frame-based likelihood of �nding a stent in each frame of the IVUS sequence.
The value of γ(t) for each position t in the sequence is computed by considering



Fig. 2. Piecewise Aggregate Approximation of a generic signal (a) and quantization of
γ(t) after gaussian normalization (b). In (c) iterations of the SAX algorithm over an
exemplar signal γ(t) are illustrated.

both the number of struts and their area, thus negatively weights small struts
areas of the images which have an high probability to be incorrect an detection.
The function γ(t) is de�ned as follows:

γ(t) =
∑

p∈M∗{S}

p|ps∈M∗{S} (1)

where ps ∈ M∗{S} indicates the pixels of the IVUS frame labeled as strut con-

taining an selected strut. An example of signal γ(t) is depicted in Figure 2(c).
The signal γ(t) may contain several transitions between low and high ampli-

tudes, due to the variability in the number of struts visible in consecutive frames
and to suboptimal struts detection. For this reason, we �lter the γ(t) signal by
considering its local statistics applying the SAX algorithm [7]. SAX is a symbolic
representation algorithm that estimates a quantization of the time series based
on global signal measurements and on local statistics of subsequent neighbor
samples. Given the signal γ(t) and a window size w, the algorithm calculates a

Piecewise Aggregate Approximation (PAA) γ̂(t), which is obtained by comput-
ing the local average values of γ(t) over nw segments w-wide. Each average value
is then normalized over the signal γ(t). The procedure �rstly computes a vector
γ(t) =

(
q1, ...qnw

)
where each of qi is calculated as follows:

qi =
1

w

w·i∑
j=w(i−1)+1

qj , (2)

where i, j ∈ N. Then, considering a Gaussian distribution of the samples, the
quanti�ed values q̂i are obtained by normalizing qi by the mean µγ and standard
deviation σγ of the signal γ(t):

q̂i =
qi − µγ
σγ

(3)

In Figure 2(a,b) a scheme illustrates how the PPA of a generic signal is computed
by applying SAX. The values µγ and σγ of each γ(t) are di�erent, since the



amplitude of γ(t) is expected to be low in case of a pullback not containing a
stent, and vice-versa. Therefore, in order to obtain a global estimation of such
variables valid for any pullbacks, it is necessary to estimate mean and standard
deviation over a training set consisting of a representative collection of stent
pullbacks.

The SAX algorithm is iterated Nsax times, until converging to �at intervals
along the signal γ(t). Figure 2(c) illustrates the iteration of the SAX algorithm
over an exemplar signal γ(t). The maximum iteration number Nsax is achieved
when the di�erence between subsequent iterations of SAX is zero. The other
parameters of the SAX algorithm is the number of quantized values assigned
to the signal Lsax. The iterative SAX algorithm is described by the following
equation:

γ(t)k+1 = SAX
(
γ(t)k, σ

trainsax

k , µtrainsax

k , Ltrainsax
)

(4)

where k ∈ 1..Nsax and σ
trainsax

k and µtrainsax

k are the mean and standard devia-
tion computed on the training set at the iteration k, and the number of quantized
values Lsax is a constant that has been optimized using the training set. When
the SAX algorithm reaches the maximum iteration number Nsax, the binary
signal indicating the stent presence of the stent is obtained as u(t) = γ(t)Nsax

>
µtrainsax

Nsax
.

3 Validation

3.1 Material

A set of 80 IVUS sequences containing a stent was collected. Roughly 50% of the
frames contained a stent. The IVUS sequences were acquired using iLab echo-
graph (Boston Scienti�c, Fremont, CA) with a 40 MHz catheter. The pullback
speed was 0.5 mm/s.

Two experts (one clinician and one experienced researcher) manually anno-
tated the beginning and the end of the stent in each sequence; more than one
annotation per pullback was allowed when several stents were implanted in sub-
sequent segments of the same artery.

3.2 Experiments on stent presence assessment

The assessment of stent presence is based on the analysis of the mono-dimensional
signal γ(t). In order to evaluate the performance, the manual annotations of be-
ginning and end of the stent were converted into binary signals γman(t) indicating
the presence of the stent in the pullback. Successively, the signals u(t) indicating
the segments of the pullback in which a stent is likely to be present, were com-
pared against the sections indicated by the observers γman(t). The performance
were evaluated applying the algorithm to the sets testmet and testabs and mea-
sures of Precision (P), Recall (R), F-Measure (F), and Jaccard-index (J) were
considered.



In our experiments, we used the training set trainmet to estimate σtrainsax

k

, µtrainsax

k and Ltrainsax . The optimal number of quantized values assigned to
the signal Lsax was chosen via cross-validation �nding the value of Lsax = 36 as
optimal.

Precision Recall F-measure Jaccard

mean (std) mean (std) mean (std) mean (std)

testmet

auto vs obs-1 85.4% (13.2%) 85.7% (7.7%) 84.8% (5.3%) 73.8% (13.7%)
auto vs obs-2 89.5% (12.0%) 76.0% (10.6%) 80.7% (6.7%) 68.0% (13.8%)
obs-1 vs obs-2 81.4% (11.3%) 98.8% (7.7 %) 87.2% (7.8 %) 80.7% (11.8 %)

Table 1. Quantitative evaluation the pullback analysis stage on both testmet and
testabs data-sets. For each data-set the performance of the automatic method versus
each manual annotation are reported. Then the inter-observer variability is shown.

The quantitative results for the pullback-wise analysis is reported in Table 1.
As IVUS is highly challenging to interpret, the two observers sometimes disagrees
as shown Table 1. The precision approaches the inter-observer variability, while
the recall is in general 10% lower than the results of the manual annotation. .The
obtained F-measure and the Jaccard measure of the automatic performance show
satisfactory results when compared with manual annotations.

4 Results and Discussion

Examples of processed signals for the stent detection in IVUS frames are depicted
in Figure 3. In Fig. 3-(A1 and B1), both initial and �nal frame of the sequence
are accurately identi�ed. The result is not obvious since in (a) the amplitude
of the signal γ(t) is almost null in two sections of the pullback. However, the
SAX algorithm allowed to detect the presence of stent, based on the statistics of
the frames in the neighbourhood. On the other hand, in Fig. 3-(A2), the central
section of the pullback where γauto(t) is almost null is correctly classi�ed by the
SAX algorithm as absence of stent. This is coherent with the manual annotation
of the two observers, where two stents are labeled. In Fig. 3-(B1 and B2), regions
of high signal separated from the main stent have been identi�ed as a secondary
implanted stent. It might be noticed that this error happens only when strong
spikes in the signal are present, for instance when a calci�ed plaque is mistaken
for a deployed stent.

5 Conclusion

In this paper, a framework for the automatic identi�cation of stent presence
along the pullback (location and extension) has been presented. The analysis
of the stent presence signal has been performed using the SAX algorithm with



provides an unsupervised classi�cation of the stent location in a fast and sta-
tistically robust fashion. The method has been implemented in Matlab and the
computation time of the pullback analysis is about 4.1 seconds, one order of
magnitude lower than the time required for detecting the stents [1] (33 seconds
per pullback). Future work will be addressed towards validating the method with
a larger data-set, including bio-absorbable stents.
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Fig. 3. Qualitative evaluation on testmet . The signal γ(t) is illustrated in the �rst
row, while in the second the result of the SAX quantization is reported. Finally in the
third row, three binary signals representing the presence or the absence of the signal
are compared: the �rst correspond to the automatic results, while the second and the
third are the annotations of the two observers.
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