
AUTOMATIC GROUND–TRUTHING USING VIDEO REGISTRATION FOR ON–BOARD
DETECTION ALGORITHMS

José M. Álvarez, Ferran Diego, Antonio López, Joan Serrat, Daniel Ponsa
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ABSTRACT

Ground–truth data is essential for the objective evaluation of
object detection methods in computer vision. Many works
claim their method is robust but they support it with experi-
ments which are not quantitatively assessed with regard some
ground–truth. This is one of the main obstacles to properly
evaluate and compare such methods. One of the main rea-
sons is that creating an extensive and representative ground–
truth is very time consuming, specially in the case of video
sequences, where thousands of frames have to be labelled.
Could such a ground–truth be generated, at least in part, au-
tomatically ? Though it may seem a contradictory question,
we show that this is possible for the case of video sequences
recorded from a moving vehicle. The key idea is to manually
label the frames in one sequence and then be able to trans-
fer this segmentation into another video sequence recorded
at a different time on the same track, possibly under a dif-
ferent ambient lighting. We have carried out experiments on
several video sequence pairs and quantitatively assessed the
precision of the transformed ground–truth, which prove that
this method is quite accurate.

Index Terms— Ground–truth generation, video registra-
tion.

1. INTRODUCTION

On–board detection algorithms refers to those methods that
uses images acquired with a camera mounted in a mobile
platform (i.e., vehicle) as input data. The detection process
consists in classifying pixels in the image as target (road, ve-
hicles, pedestrians) or background.

The objective evaluation of on–board detection algo-
rithms is usually done by comparing the result with an ideal
result (or ground–truth) which is mainly generated manu-
ally. The manual annotation over all the data collection is
expensive and very time consuming, specially in the case of
video sequences, where thousands of frames have to be la-
belled. This effort is even higher for those algorithms which
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Fig. 1. The evaluation on–board detection algorithms which
are claimed to be robust to lighting variations requires imag-
ing and ground–truthing the same scene under different illu-
mination conditions.

are claimed to be robust to imaging conditions (i.e., varying
illumination and weather conditions [1]). Their evaluation
involves imaging and ground–truthing the same scene ac-
quired under different conditions (Fig. 1). Annotating such
large volumes of ground–truth data involve having errors
due to the drop off of the user attention. Hence, any degree
of automation within this process leads to a more accurate
ground–truth data since it requires less time and the user can
maintain the attention.

There are only a few approaches addressing the problem
of automatic ground–truth generation. However, these works
refers to static cameras [2] or aerial images [3]. The former
can not be applied to moving cameras and the latter presents
a method for generating the ground–truth of the frames in
a video sequence assuming the ground–truth of some key
frames exists. However, this can not be applied to generate
the ground–truth of a video sequence given the ground–truth
of another sequence.

In this paper, as a novelty, an automatic ground–truthing
algorithm is proposed. In particular, we focus on the genera-
tion of ground–truth data of video sequences recorded using
moving cameras. The key idea of the algorithm is to manually
label the frames in one sequence and then be able to transfer
this segmentation into another video sequence recorded at a
different time on the same track, possibly under different il-
lumination. To this end, we first solve the problem of tempo-
ral alignment (synchronization) of the two videos, since the
vehicle speed varies along time and between videos. Once
it is done, corresponding frames can be spatially registered,
and then, the ground-truth region from annotated video can



be transferred to the target one.
The rest of this paper is organized as follows: First, in

Sect. 2, the automatic ground–truthing algorithm is intro-
duced. Experiments to validate the algorithm are presented
in Sect. 3. The goal of the experiments is to generate the
ground–truth to evaluate road detection algorithms under
varying illumination conditions. Quantitative and qualitative
evaluation are provided. Finally, in Sect. 4 conclusions are
drawn.

2. AUTOMATIC GROUND–TRUTHING
ALGORITHM

In this section the automatic ground–truthing algorithm is
introduced. The aim of the algorithm is the generation of
ground–truth data of video sequences recorded using moving
cameras. The key idea of the devised algorithm is transferring
the known ground–truth of one video sequence into another
video sequence recorded at different time and different light-
ing conditions but under the same track. The algorithm,
which considers the knowledge of a reference sequence and
the ground-truth for each image of the reference video, is
divided in two major phases (Fig. 2). In the first phase,
the temporal alignment (synchronization) between the input
video sequence and the reference is solved. Then, in the
second phase, corresponding frames are spatially registered.
The result is used to transfer the ground–truth of from one
sequence to the other.

Fig. 2. Automatic ground–truthing algorithm.

2.1. Video Registration

The aim of video registration is to find out a mapping from the
time domain of one sequence to another one, such that corre-
sponding frame pairs, one from each sequence, show ’similar
content’ [4]. This is a challenging task since the images are
taken at different time from a mobile platform manually op-
erated. Hence, the platform does not follow exactly the same
trajectory and does not maintain a constant speed.

Ground–truth generation for on–board detection algo-
rithms has three main requirements: (1) independent move-
ments of the cameras (mobile platforms), (2) unknown plat-
form trajectories and (3) non–linear time correspondences
due to non–constant speeds. Although many video regis-
tration techniques have been proposed [5, 6, 7, 8], only the
technique proposed in [8] can deal with the specific require-

ments of our application. This technique is divided in two
different parts: temporal alignment and spatial registration.

2.1.1. Temporal Alignment

Temporal alignment can formulated as a labeling problem
which consists in estimating a list of no labels x1:no =
[x1 . . .xt . . .xno ]. Each label xt is the frame number in the
reference video corresponding to the tth frame of the ob-
served sequence. This task has been posed as a maximum a
posteriori Markov random field inference problem following:

xMAP
1:no = arg min

x1:no∈X
U (x1:no |y1:no) (1)

∝ arg min
x1:no∈X

U (y1:no |x1:no)+U (x1:no)

where X is the set of all possible labellings, U (x1:no) is
the prior energy and U (y1:no |x1:no) is the likelihood energy.
Hence, Viterbi algorithm [9] is applied to exactly infer xMAP

1:no
The prior energy is expressed as a pairwise energy term

written as

U (x1:no) =
no−1

∑
t=1

V (xt ,xt+1) (2)

where V (xt ,xt+1) is the potential clique used to constraint the
vehicle movement whose can stop but not reverse its motion
direction in both sequences. Therefore, the labels xt must
increase monotonically following

V (xt ,xt+1) =
{

β if xt+1 ≥ xt
0 otherwise (3)

where β is a constraint that gives the same importance to
any label greater or equal than xt . The likelihood energy
U (y1:no |x1:no) is the unary term of our MRF expressed by

U (y1:no |x1:no) =
no

∑
t=1

V (xt ,yt) (4)

where V (xt ,yt) is the frame similarity which must be mini-
mum if two frames are corresponding. Additionally, this must
satisfy the assumption that both videos were recorded follow-
ing similar trajectories.

An image descriptor is defined, d, in order to compare a
pair of images. To compute d the following steps are done:
first, the original image is smoothed a Gaussian kernel and
downsampled to 1/16th of the original resolution. Then, the
partial derivatives (ix, iy) are computed setting them to zero if
its gradient magnitude is less than 5% of the maximum. The
rows of ix followed by those of iy are built as a vector d∗ which



is normalized to unit norm. Finally, the frame similarity is
defined as,

V (xt ,yt) =
(< dt ,dxt >−1)2

2σ2
a

(5)

where dt is the image descriptor of the tth frame of observed
sequence, dxt is the image descriptor of the xth

t frame of ref-
erence sequence, σa has been to set to 0.5 to give a signifi-
cant likelihood only to frames whose image descriptor form
an angle less than 5o degrees approximately, and <,> is the
scalar product which can be considered as the coincidence
of the gradient orientation in the subsampled image. In ad-
dition, this likelihood must be also low when appears slight
camera rotations and translations due to trajectory dissimilar-
ities. dt is computed from horizontal and vertical translations
of the low resolution smoothed image up to 2 pixels. Then,
the frame similarity is the maximum value obtained using the
scalar product dt .

2.1.2. Spatial Registration

The result of the temporal alignment is a list of pairs of corre-
sponding frame numbers (t,xt), t = 1 . . .no. Ideally, for each
pair of frames the camera was at the same position or very
close to each other. In that case, only the camera pose may be
different. Let the rotation matrix R express the relative orien-
tation of the camera for one pair of frames. The coordinates
of the two corresponding frames Fo

t ,Fr
xt are related by the ho-

mography H = KRK−1, where K = diag( f , f ,1), f being the
camera focal length in pixels. The rotation R is parameter-
ized by the Euler angles Ω = (Ωx,Ωy,Ωz) (pitch, yaw and
roll respectively). The motion vector field associated to this
homography can be approximated using the model in [10].
This model holds under the assumption of having small an-
gles and large focal length. The model is quadratic in the x
and y coordinates but linear in the parameters Ω:

u(x;Ω) =

[
− xy

f f + x2

f −y

− f − y2

f
xy
f x

]


Ωx
Ωy
Ωz


 . (6)

Ω parameters are estimated by minimizing a registration
error. In particular, the sum of squared linearized differences
(i.e., the linearized brightness constancy) is used:

Ω∗ = argmin
Ω

(
∑
x

[
Fr

xt (W (x;Ω))−Fo
t (x)

]2) (7)

In order to deal with large miss–alignments, Ω parameters
are successively estimated in a coarse–to–fine manner. For a
detailed description we refer the reader to [11].

3. RESULTS

In this section the proposed algorithm has been used to gen-
erate the ground–truth data for on–board road detection algo-
rithms [1]. The aim of these algorithms is to detect the road
in front of a moving vehicle using a single color camera at-
tached to the windshield, forward facing. One of the major
challenges of these algorithms is dealing with lighting varia-
tions (i.e., shadows, highlights). Thus, the algorithm has to be
tested using video sequences with hundreds of frames of the
same track acquired under different conditions (Fig. 1).

The experiments have been conducted on two different
video sequences on the same track. The former sequence
contains 627 frames and was recorded in the morning. That
is, without shadows. The latter contains 540 frames and was
recorded under the influence of lighting variations. The dif-
ference in the number of frames is due to differences in the
trajectory and speed of the vehicle. Both sequences were
recorded at the same frame rate. Ground–truth data of each
frame in one sequence (the reference) has been manually gen-
erated. Example results of the generated ground–truth for the
second sequence are shown in Fig. 3 and Fig. 4. These
results suggest that the reference ground–truth is correctly
transferred from the reference sequence to the input one. As
shown, errors are mainly concentrated on boundaries Fig. 3c.
However, these errors may be due to the boundary ambigu-
ity error. This error refers to the inherent ambiguity in the
boundary perception when manually segmenting the images
to generate the ground–truth.

(a) (b)

(c) (d)

Fig. 3. Example results. The frame from the reference se-
quence (a) is aligned with the input frame (b). The reference
ground–truth (c) is used to generate the output ground–truth.
Yellow color refers to true positive pixels. Black color refers
to true negative pixels. Red color refers to false positives
while green colors refers to false negatives.

Quantitative assessment is provided using two pixel–wise



(a) (b)

(c) (d)

Fig. 4. Example results. See Fig. 3 for details.

error measures: accuracy (ACC = T P+T N
T P+FP+FN+T N ) and qual-

ity (ĝ = T P
T P+FP+FN ). TP is the number of correctly labelled

road pixels, TN is the number of non-road pixels detected, FP
is the number of non-road pixels classified as road pixels and
FN is the number of road pixels erroneously marked as non-
road. Each of these measures provides different insight of
the results. Accuracy provides information about the fraction
of classifications that are correct. Quality provides informa-
tion about the completeness of the extracted data as well as
its correctness. Both measures range from 0 to 1, where 1
corresponds to the ideal result.

To properly assess the quality of the results, manual
ground–truth has been generated for the input sequence.
Having both manual ground–truth available, two different
evaluations have been done. The former uses the first se-
quence as reference. The latter uses the second as reference.
The averaged performance over all the corresponding frames
is shown in Table. 1. Small differences are due to the differ-
ent number of frames in each video sequence. The highest
performance is achieved when the largest video sequence is
used as reference. The main reason is that the algorithm does
not interpolate the information between frames. Thus, the
large amount information available as reference, the highest
accuracy in the registration process. However, this is a minor
drawback since reference sequence can be recorded driving
at a lower speed or recording at a higher frame–rate.

ĝ ACC
Using seq. 1 as reference 0.98±0.02 0.67±0.15

Using seq. 2 as reference 0.97±0.001 0.67±0.15

Table 1. Performance of the ground–truthing algorithm.

An inherent limitation of the method is the presence of
moving vehicles in the input sequence. However, this is a

minor limitation since vehicle detection algorithms can be in-
cluded in the registration process. Once the car is detected the
ground truth can be covered. In addition, this algorithm can
be used in semi–supervised operation. That is, the ground–
truth is automatically generated and shown to the operator for
validation. Even this would not be completely automatic, the
amount of time saved is still considerably.

4. CONCLUSIONS

In this paper, as a novelty, an automatic ground–truthing al-
gorithm has been proposed. The key idea of the algorithm
is to manually label the frames in one sequence and then be
able to transfer this segmentation into another video sequence
recorded at a different time on the same track, possibly under
different illumination. The algorithm has been successfully
applied to generate the ground–truth necessary to assess on–
board road detection algorithms. Qualitatively and quantita-
tively evaluations prove that this method is quite accurate.
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